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Abstract
This paper investigates the transient solution of discrete and
continuous time Markov chains (DTMC and CTMC) using
the class of methods based on the undetermined coefficients
approach. Two methods that belong to this class are investi-
gated: The well known Eigenvectors method, and what it is
referred in the paper as the Vandermonde method, because it
leads to the solution of a Vandermonde system of equations.
Even if the Vandermonde method is possibly the simplest
method to obtain the transient solution of a Markov chain,
it has received few attention in the literature. This paper
fills this gap, showing its advantages. The Vandermonde
method is also exploited to derive interesting relations be-
tween a CTMC and its uniformized chain. Based on them,
it is proposed a simple, yet powerful method to compute
the transient solution of Markov chains referred to as the
Uniformized Vandermonde method.

1 Introduction
Probabilistic modeling using Markov chains has been suc-
cessfully exploited in almost all fields of modern applied
mathematics. The stationary solution of a Markov chain is
more easy to compute than the transient solution, and it is
enough in many cases. However, some applications, as re-
liability modeling, are primarily interested in the transient
solution (see e.g. [6]).

In the literature there have been proposed many methods
to compute the transient solution of Markov chains. Some
examples are the approaches based on Laplace transform
techniques [6], the exponential matrix [7], differential equa-
tion solvers, etc. The chapter 8 of the classic book of Stew-
art [12] is dedicated to this topic. However, most of these
algorithms are not general, are difficult to implement, or are
applicable only to chains with a small number of states.

This paper focuses on the class of methods based on the
undetermined coefficients approach. This approach consists
on making an intelligent guess of a function with constant
coefficients for the solution of an equation, and then use
boundary conditions to solve these coefficients. The unde-

termined coefficients approach has been successfully used
to find the solution of many difference and differential equa-
tions. The transient solution of a Discrete or Continuous
Time Markov Chain, DTMC and CTMC, is the solution of
a difference or differential equation respectively. Therefore,
DTMC and CTMC are suited to be solved using algorithms
based on the undetermined coefficients approach.

The well known Eigenvectors method, explained later
in this paper, belongs to the class of undetermined coeffi-
cients approaches. Another possibility is applying the un-
determined coefficients approach directly to the solution of
the Markov chain, expressed in terms of its eigenvalues.
By doing so, the undetermined coefficients are obtained by
solving a confluent Vandermonde system of equations. In
this paper the pros and cons of these methods are analyzed.
They will be referred to respectively as the Eigenvectors
and Vandermonde methods. Furthermore, in this paper it is
proposed a novel method that combines the Vandermonde
method with the well known technique of Uniformization.
Thorough the paper, this novel proposal will be referred
to as the Uniformized Vandermonde method. Numerical
results show that the Uniformized Vandermonde method
yields a simple yet powerful technique to compute the tran-
sient solution of a CTMC.

The rest of the paper is organized as follows. First,
the function with constant coefficients for the solution of a
DTMC is presented in section 2, and in section 3 it is solved
using the Eigenvectors and Vandermonde methods. In sec-
tions 4 and 5, the same it is done for a CTMC. Notice that
most of the contents of these sections are not a contribution
of this paper. For instance, the Eigenvectors method ap-
plied to Markov chains can be found in classic books as [4,
sec. 4.8]. The expression for the exponential matrix having
confluent eigenvalues can be found in early works as [3, 5].
Nevertheless, to my best knowledge, the general solution
for a DTMC (equation (3)), has been not reported previ-
ously in the literature. The CTMC counterparts have been
included for the sake of completeness, and because they are
the basis of Uniformized Vandermonde method presented in
section 6. An additional reason is that, even if the Vander-
monde method is the simplest way to compute the transient
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solution of a Markov chain, it is not covered, or it is done
superficially, in the books that I have found in the litera-
ture. This paper tries to fill this gap, giving examples and
highlighting the striking parallelism that exists when this
method is used to solve DTMC and CTMC. In section 7
are carried out numerical experiments analyzing the differ-
ent methods described in this paper. Finally, concluding
remarks are given in Section 8.

2 Discrete Time Markov Chains

Let X(n) be an homogeneous finite-state discrete-time
Markov chain with k states, and one step transition prob-
ability matrix of size k, Pk×k. The transient solution is
given by the powers of P [4]:

π(n) = π(0)Pn (1)

where π(0) is the initial distribution, and the components
of the row vector π(n) are the probabilities

πj(n) = Prob
{
X(n) = j

∣∣ π(0)} (2)

If we are interested in computing πj(n) for only a re-
duced number of states, the following expression may be
more efficient that computing the powers of the matrix P.

Theorem 2.1 Let λl, l = 1, · · ·L be the eigenvalues of P,
each with multiplicity kl (

∑
l kl = k). Without loss of gen-

erality, assume a possible eigenvalue λ1 = 0 with multi-
plicity k1. Then:

πj(n) =

k1−1∑
m=0

a
(1,m)
j δn−m +

L∑
l=2

λnl

kl−1∑
m=0

a
(l,m)
j nm (3)

where δk is the Kronecker’s delta (δk = 1 for k = 0 and 0
otherwise).

Proof. Using the Jordan Form of the matrix P =
A J A−1, where A is some invertible matrix, and J =
diag(J1, J2, · · ·JL) is a diagonal block matrix, with the
Jordan blocks Jl (Jl has λl in the main diagonal, 1s in the
first upper diagonal, and size equal to the multiplicity of λl,
kl):

Jkl×kll =


λl 1 0 0 · · · 0 0
0 λl 1 0 · · · 0 0
0 0 λl 1 · · · 0 0
· · ·
0 0 0 0 · · · λl 1
0 0 0 0 · · · 0 λl

 (4)

We have that Jn = diag(Jn1 , Jn2 , · · ·JnL). To compute
the powers of a Jordan block, we write:

Jl = λl I + Ukl×kl
1 (5)

where Ukl×kl
1 is a matrix with the first upper diagonal equal

to 1, and the other elements equal to zero:

Ukl×kl
1 =


0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
· · ·
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

 (6)

It can be easily obtained that:

(Ukl×kl
1 )n = Ukl×kl

n (7)

where Ukl×kl
n is a matrix with the n-th upper diagonal equal

to 1, and the other elements equal to zero. Ukl×kl
n = 0 if

n ≥ kl.
Assume first that λl 6= 0,∀l. We can write:

Jnl = (λl I + Ukl×kl
1 )n =

n∑
i=0

(
n

i

)
λn−il (Ukl×kl

1 )i = λnl ×
1 λ−1l

(
n
1

)
λ−2l

(
n
2

)
· · · λ

−(kl−1)
l

(
n

kl−1
)

0 1 λ−1l
(
n
1

)
· · · λ

−(kl−2)
l

(
n

kl−2
)

0 0 1 · · · λ
−(kl−3)
l

(
n

kl−3
)

· · ·
0 0 0 · · · 1

 (8)

where it is assumed
(
k
j

)
= 0 for j > k, and (Ukl×kl

1 )0 = I.

Since
(

n
kl−1

)
= n (n−1)···(n−kl+2)

(kl−1)! = 1
(kl−1)! (n

kl−1 +

· · · ) is a polynomial in n of degree kl − 1, we conclude
that the elements of the matrix Pn = A Jn A−1 will be
linear combinations of the eigenvalues of P to the power
of n, times polynomials in n of degree equal, at most, to
their multiplicity-1, and so it will be π(0)Pn, as stated in
equation (3).

If there is an eigenvalue λ1 = 0 with multiplicity k1, the
Jordan block associated with this eigenvalue will be: J1 =
Uk1×k1

1 . Therefore, the result of A Jn A−1 associated with
this eigenvalue will be a constant, possibly different, for
each n = 0, · · · , k1 − 1, and 0 for n ≥ k1 (recall that
(Uk1×k1

1 )n = 0 for n ≥ k1). Note also that if k1 = 1,
then it is (U1×1

1 )n = 0n = δn. Here it is assumed 00 = 1
for consistency with the fact that π(n)|n=0 = π(0)P0 =
π(0) I = π(0).

Remark 2.1 Assume that the Markov chain has the eigen-
value λ1 = 1 with multiplicity k1 > 1 (see appendix A).
Clearly, the polynomial corresponding to this eigenvalue:

p
(1)
j (n) =

k1−1∑
m=0

a
(1,m)
j nm (9)

must have the coefficients a(1,m)
j = 0, form = 1, · · · , k1−

1. Otherwise, the solution (3) will be unbounded. There-
fore, the eigenvalue λ1 = 1 has only 1 undetermined co-
efficient (p(1)j (n) = a

(1,0)
j ). A consequence of this fact is

that the geometric multiplicity of the eigenvalue λ1 = 1
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must be equal to its algebraic multiplicity, k1 (the geomet-
ric multiplicity is defined as the number of linearly indepen-
dent eigenvectors associated with the eigenvalue). Thus, the
eigenvalue λ1 = 1 has k1 Jordan blocks of size 1. There
may be other eigenvalues with geometric multiplicity larger
than 1. However, it is not necessary to compute the geomet-
ric multiplicity of the eigenvalues: If the geometric multi-
plicity of an eigenvalue λl is gl, when solving for a(l,m)

j it

will be obtained that a(l,m)
j = 0 for m > kl − gl. �

3 Undetermined Coefficients of a
DTMC

In equation (3) there are up to k undetermined coefficients
a
(l,m)
j of πj(n) to be determined. This paper focuses on the

computation of these coefficients. Thorough the paper the
sentence the UC of πj(n), or simply the UC, will be used
to refer to the undetermined coefficients a(l,m)

j of πj(n).
Additionally, to denote the UC of πj(n) it will be used no-
tation:

uuuj =
[
uuu
(1)
j · · · uuu

(L)
j

]
, (10)

where uuuj is a column vector with uuu
(l)
j =[

a
(l,0)
j · · · a

(l,kl−1)
j

]
, l = 1, · · ·L. In the following two

methods to compute the UC of πj(n) are described.

3.1 Eigenvectors Method
If the matrix P is diagonalizable, the Jordan blocs are re-
duced to scalars: Jl = λl, and the matrix P admits the
spectral decomposition: P = L−1 Λ L, where Λ is the
diagonal matrix Λ = diag(λ1, · · ·λk), and L is a matrix
whose rows, l1, · · · lk, are the left-hand eigenvectors of P.
Since Λn = diag(λn1 , · · ·λnk ), substituting into equation (1)
we have

π(n) = π(0)Pn = π(0)L−1 Λn L =

k∑
i=1

ai λ
n
i li (11)

where we assume λni = δn for any λi = 0. Defining the row
vector a =

[
a1 · · · ak

]
, the constants ai can be obtained

solving the system of equations:

a L = π(0) (12)

and, by (11), the UC of πj(n) (the vector uj) are given
by the element wise product of the vector a that solves the
system (12), and the j column of L.

If we want to use right eigenvectors, perhaps because our
numerical tool only computes them, then we can proceed
as follows. Let R be a matrix whose columns, r1, · · · rk,
are the right-hand eigenvectors of (P)T, where ()T is the
transpose operator. Then, (P)T = R Λ R−1, and:

(π(n))T =

k∑
i=1

bi λ
n
i ri (13)

Defining the column vector b =
[
b1 · · · bk

]
, then, the

constants bi can be obtained solving the system of equa-
tions:

R b = (π(0))T (14)

and, by (13), the vector uuuj (see equation (10)) is given by
the element wise product of the vector b that solves the sys-
tem (14), and the j row of R.

Note that P is diagonalizable only if the geometric mul-
tiplicity of all its eigenvalues is equal to its multiplicity (the
matrix is said to be not defective). This is an important re-
striction of this method.

3.2 Vandermonde Method
The UC of πj(n) can be obtained solving the system of
equations that results from imposing the boundary condi-
tions to equation (3):

πj(n) = (π(0)Pn)j (15)

for n = 0, 1, · · · , up to the number of UC to be determined.
If we don’t exploit the fact that the geometric multiplicity
of some eigenvalues may be larger that 1, then there will be
k UC, where k is the number of states of the Markov chain,
i.e. the size of the square matrix P (see remark 2.1). The
notation (xxx)j refers to the j component of the vector xxx. In
other words, the vector uuuj with the UC of πj(n), defined
by (10), can be obtained solving the system of equations:[

A1 · · · AL

]
uuuj = B (16)

where the sub-matrices Ak×kl
l , l = 1, · · ·L, (λ1 = 0, λl 6=

0) are given by:

Ak×k1
1 =

 1 0 · · · 0
0 1 · · · 0
· · ·

 (17)

Ak×kl
l =


1 0 · · · 0
λl λl · · · λl
λ2l 2λ2l · · · 2kl−1 λ2l
· · ·
λnl nλnl · · · nkl−1 λnl
· · ·

 (18)

and B is the column vector

B =
[
πj(0) (π(0)P)j (π(0)P2)j · · ·

]
(19)

Note that if the chain starts in state i with probability 1 (i.e.,
π(0) is a probability vector with the probability 1 in the
component i), then B = [δij (P)ij (P

2)ij · · · ], where δij is
the Kronecker’s delta (δij = 1 for i = j, and 0 otherwise).

Using this approach, uuuj is obtained solving a confluent
Vandermonde system, for which there exist abundant lit-
erature and fast numerical methods. One example is the
method of Björ and Pereyra [1]. However, for large matri-
ces this method fails to give accurate results, due to round-
ing errors. Therefore, in the numerical experiments given in
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section 7 it was found more convenient building the Vander-
monde matrix and solving the system using a QR decompo-
sition [11].

This second approach has the advantage over the previ-
ous one that the matrix P can be defective. Therefore, this
approach gives a more general solution.

Remark 3.1 In order to compute the vector B it is not nec-
essary the computation of the powers of the matrix P, as
it may seem from equation (19). This would be costly for
large matrices. Note that equation (19) can be implemented
as the product of a row vector, r, k − 1 times the matrix
P, as shown in the algorithm 3.1. Note also that if we are
interested in πj(n) for j = {j1, · · · jn}, then it is conve-
nient to solve the system (16) for the matrix Bk×|j| that
would be computed using algorithm 3.1 with the indexes
j = {j1, · · · jn}. �

Algorithm 3.1 Computation of vector B.

1: B[1]← π0[j]
2: r← π0

3: for all i in 2 : k do
4: r← rP
5: B[i]← r[j]
6: end for

In the following there are some examples of the Van-
dermonde method. The examples illustrate as the Vander-
monde method allows obtaining the solution of small chains
without the help of a computer. In these simple examples
the notation is simplified, using capital letters to refer to the
UC.

Example 3.1 Assume a DTMC with

P =

4/5 1/5 0
0 4/5 1/5
1/5 1/5 3/5


We want the probability of being in state 3 in n steps

starting from state 1 (i.e. π3(n) with π(0) =
[
1 0 0

]
).

It can be easily found that the eigenvalues of P are λ1 = 1
with multiplicity 1 (as expected, since P is an irreducible
stochastic matrix), and λ2 = 3/5 with multiplicity 2. Fol-
lowing equation (3) we guess the solution:

π3(n) = λn1A+ λn2 (B + C n)

= A+ (3/5)n (B + C n)

Imposing the boundary conditions:

π3(0) = A+B = (P0)13 = 0

π3(1) = A+ (3/5) (B + C) = (P1)13 = 0

π3(2) = A+ (3/5)2 (B + 2C) = (P2)13 = 1/25

we have that A = −B = 1/4, C = −1/6, thus:

π3(n) = 1/4− (3/5)n (1/4 + n/6), n ≥ 0

It can be checked that the geometric multiplicity of the
eigenvalue λ2 = 3/5 is 1. Thus, this problem would be
ill-conditioned if solved with the Eigenvectors method. �

Example 3.2 Assume a DTMC with two transient states:

P =


0 1 0 0
0 0 1 0
0 0 2/3 1/3
0 0 1/3 2/3


We want the probability of being in state 3 in n

steps starting from state 1 (i.e. π3(n) with π(0) =[
1 0 0 0

]
). It can be easily found that the eigenvalues

of P are λ1 = 0 with multiplicity 2 (due to the two transient
states), and λ2 = 1, λ3 = 1/3. We guess the solution:

π3(n) = Aδn +B δn−1 + C +D (1/3)n

Imposing the boundary conditions:

π3(0) = A+ C +D = (P0)13 = 0

π3(1) = B + C +D/3 = (P1)13 = 0

π3(2) = C +D/32 = (P2)13 = 1

π3(3) = C +D/33 = (P3)13 = 2/3

we have that A = −5, B = −2, C = 1/2, D = 9/2 thus:

π3(n) = −5 δn − 2 δn−1 + 1/2 + 9/2 (1/3)n, n ≥ 0

It can be checked that the geometric multiplicity of the
eigenvalue λ1 = 0 is 1. Thus, this problem would be ill-
conditioned if solved with the Eigenvectors method. �

Example 3.3 Assume a DTMC with two absorbing states:

P =


3/5 1/5 1/5 0
1/5 3/5 0 1/5
0 0 1 0
0 0 0 1


We want the probability of being in state 3 in n

steps starting from state 1 (i.e. π3(n) with π(0) =[
1 0 0 0

]
). It can be easily found that the eigenval-

ues of P are λ1 = 1 with multiplicity 2 (due to the two
absorbing states), and λ2 = 4/5, λ3 = 2/5. Following the
remark 2.1 we guess the solution:

π3(n) = A+B (4/5)n + C (2/5)n

Imposing the boundary conditions:

π3(0) = A+B + C = (P0)13 = 0

π3(1) = A+ (4/5)B + (2/5)C = (P1)13 = 1/5

π3(2) = A+ (4/5)2B + (2/5)2 C = (P2)13 = 8/25

we have that A = 2/3, B = −1/2, C = −1/6, thus:

π3(n) = 2/3− 1/2 (4/5)n − 1/6 (2/5)n, n ≥ 0

Of course, 2/3 is the probability of being absorbed by state
3, starting from state 1. �
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4 Continuous Time Markov Chains
Let X(t) be an homogeneous finite-state continuous-time
Markov Chain with k states, and infinitesimal generator of
size k, Qk×k. The transient solution is given by the expo-
nential matrix eQ t [4]:

π(t) = π(0) eQ t (20)

where π(0) is the initial distribution and the components of
the row vector π(t) are the probabilities

πj(t) = Prob
{
X(t) = j

∣∣ π(0)} (21)

An expression for πj(t) can be obtained analogously to
the discrete time case.

Theorem 4.1 Let λl, l = 1, · · ·L be the eigenvalues of Q,
each with multiplicity kl (

∑
l kl = k), then:

πj(t) =

L∑
l=1

eλl t
kl−1∑
m=0

a
(l,m)
j tm (22)

Proof. Similarly to section 2, using the Jordan Form of the
matrix Q = A J A−1, where A is some invertible matrix,
and J = diag(J1, J2, · · ·JL) is a diagonal block matrix,
with the Jordan blocks Jl. We have:

eQ t =

∞∑
n=0

(Q t)n

n!
= A eJ t A−1 (23)

where eJ t = diag(eJ1 t, eJ2 t, · · · eJL t). To compute the
exponential matrices of the Jordan blocks, we write: Jl =
λl I + Ukl×kl

1 , where the matrix Ukl×kl
1 is as defined in

section 2. Thus:

eJl t =

∞∑
n=0

(Jl t)
n

n!
=

∞∑
n=0

tn

n!
(λl I + Ukl×kl

1 )n =

∞∑
n=0

tn

n!

n∑
i=0

(
n

i

)
λn−il (Ukl×kl

1 )i =

∞∑
i=0

∞∑
n=i

(λl t)
n−i

n!

(
n

i

)
(Ukl×kl

1 t)i =

∞∑
i=0

(Ukl×kl
1 t)i

i!

∞∑
j=0

(λl t)
j

j!
=

eλl t
kl−1∑
i=0

(Ukl×kl
1 )i ti

i!
(24)

where it was used the change j = n − i, and the fact that
(Ukl×kl

1 )i = 0 if i ≥ kl. Using (24), we conclude that
the elements of the matrix eQ t = A eJ t A−1 will be lin-
ear combinations of eλl t times polynomials in t of degree
equal, at most, to kl − 1, as stated in equation (22).

Remark 4.1 Note that, in contrast to case of a DTMC, now
it is not necessary a special attention to the eigenvalue λl =
0. In fact, since eλl t = 1 for λl = 0, the UC associated
with λl = 0 in a CTMC is the only one that do not vanish

when t → ∞. Thus, λl = 0 is for a CTMC equivalent to
what the eigenvalue λl = 1 is for a DTMC. Additionally,
the remark 2.1, regarding to the eigenvalue λ1 = 1 in a
DTMC, has its counterpart for the eigenvalue λ1 = 0 in a
CTMC: Assume that the Markov chain has the eigenvalue
λ1 = 0 with multiplicity k1 > 1 (see appendix A). Clearly,
the polynomial corresponding to this eigenvalue:

p
(1)
j (n) =

k1−1∑
m=0

a
(1,m)
j tm (25)

must have the coefficients a(1,m)
j = 0, form = 1, · · · , k1−

1. Otherwise, the solution (22) will be unbounded. There-
fore, for the eigenvalue λ1 = 0 there will be only 1 unde-
termined coefficient (p(1)j (n) = a

(1,0)
j ). �

5 Undetermined Coefficients of a
CTMC

In equation (22) there are up to k UCs a(l,m)
j of πj(t) to

be determined. The two methods described in section 3 can
be applied to obtain the UC of π(l)

j (t). The Eigenvectors
method described in section 3.1 is almost identical for a
CTMC, thus, it will not be repeated here. The only dif-
ference is that λni in equations (11) and (13), are now eλi t

(and, in contrast to the DTMC, it is not necessary a special
attention to the eigenvalue λl = 0).

5.1 Vandermonde Method
The UC of πj(t) can be obtained solving the system of
equations that results from imposing the boundary condi-
tions to equation (22):

∂nπj(0)

∂tn
= (π(0)Qn)j (26)

for n = 0, 1, · · · , up to the number of UC to be determined.
As in the discrete case, the vector uuuj with the UC of πj(t),
defined by (10), can be obtained solving the system of equa-
tions:

[
A1 · · · AL

]
uuuj = B, where the sub-matrices

Ak×kl
l , l = 1, · · ·L are given by (see appendix B):

Ak×kl
l =



1 0 · · · 0
λl 1 · · · 0
λ2l 2λl · · · 0
· · ·
λnl nλn−1l · · · nkl−1 λ

n−(kl−1)
l

· · ·

 (27)

where nm = n (n−1) · · · (n−m+1), nm = 0 for n < m,
and B is the column vector:

B =
[
πj(0) (π(0)Q)j (π(0)Q2)j · · ·

]
(28)

Note that if the chain starts in state i with probability 1 (i.e.,
π(0) is a probability vector with the probability 1 in the
component i), then B = [δij (Q)ij (Q

2)ij · · · ]. Note also
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that the vector B given by (28) as exactly the same form
than in the DTMC (equation (19)). Thus, the remark 3.1
regarding the computation of the vector B for the DTMC,
is applicable now changing the matrix P by Q.

Example 5.1 Assume a CTMC with

Q =

−1 1 0
0 −1 1
1 1 −2


We want the probability of being in state 3 at time t start-

ing from state 1 (i.e. π3(t) with π(0) =
[
1 0 0

]
).

It can be easily found that the eigenvalues of Q are λ1 =
0 with multiplicity 1 (as expected, since Q is irreducible),
and λ2 = −2 with multiplicity 2. Following equation (22)
we guess the solution:

π3(t) = eλ1 tA+ eλ2 t(B + C t)

= A+ e−2 t (B + C t)

Imposing the boundary conditions:

π3(0) = A+B = (Q0)13 = 0

π′3(0) = −2B + C = (Q1)13 = 0

π′′3 (0) = (−2)2B + 2 (−2)C = (Q2)13 = 1

we have that A = −B = 1/4, C = −1/2, thus:

π3(t) = 1/4− e−2 t (1/4 + t/2), t ≥ 0

It can be checked that the geometric multiplicity of the
eigenvalue λ2 = −2 is 1. Thus, this problem would be
ill-conditioned if solved with the Eigenvectors method. �

Example 5.2 Assume a CTMC with two absorbing states:

Q =


−5 4 1 0
4 −5 0 1
0 0 0 0
0 0 0 0


We want the probability of being in state 3 at time t start-

ing from state 1 (i.e. π3(t) with π(0) =
[
1 0 0 0

]
). It

can be easily found that the eigenvalues of Q are λ1 = 0
with multiplicity 2 (due to the two absorbing states), and
λ2 = −1, λ3 = −9. Following the remark 4.1 we guess the
solution:

π3(t) = A+B e−t + C e−9 t

Imposing the boundary conditions:

π3(0) = A+B + C = (Q0)13 = 0

π′3(0) = −B − 9C = (Q1)13 = 1

π′′3 (0) = (−1)2B + (−9)2 C = (Q2)13 = −5

we have that A = 5/9, B = −1/2, C = −1/18, thus:

π3(t) = 5/9− 1/2 e− t − 1/18 e−9 t, t ≥ 0 �

6 Uniformized Vandermonde
Method

Computational roundoff errors may lead the CTMC solu-
tion methods described in section 5 to give inaccurate re-
sults, specially for chains with a large number of states. The
Eigenvectors method fails, particularly for asymmetric ma-
trices, because the numerical tool may not be able to obtain
linearly independent eigenvectors (see [7]). In case of the
Vandermonde method, because the eigenvalues of the ma-
trix Q may be out of the unit circle, and thus, the matrix (27)
used to compute the undetermined coefficients may have a
large norm and be ill-conditioned. This problem can be al-
leviated using the well known uniformization method (see
e.g. [9, 12]). This method consists of considering the uni-
formized matrix:

P = I +
1

q
Q (29)

where q is a constant such that maxi |(Q)ii| ≤ q <∞, and
using the equation (conveniently truncated):

π(t) = π(0) eQ t =

∞∑
n=0

e−q t
(q t)n

n!
π(0)Pn (30)

Note that the matrix P defined by (29) is stochastic, and
the equation (30) can be easily proved by direct substitu-
tion of the definition of the matrix P (29). The problem
of directly applying the uniformization formula (30) is that
computing the powers Pn can be costly for large number
of states. Additionally, storing these powers will be infeasi-
ble for large matrices, thus, the powers Pn will have to be
computed for each time t that we wish to evaluate.

To cope with the above mentioned problems we can use
the DTMC defined by P to compute the uniformized chain
probabilities π(P )

j (n) for each of the states j we are in-
terested, as described in section 2. Thorough this section
the indexes (P ) and (Q) will be used to distinguish the uni-
formized chain and the original CTMC chain with infinites-
imal generator Q, respectively. Note that the initial condi-
tions, π(0), are the same for both chains. So, (P ) (Q) will
not be used with π(0). From equation (30) we have:

π
(Q)
j (t) =

∞∑
n=0

e−q t
(q t)n

n!
π
(P )
j (n) (31)

Let λ(P )
l , l = 1, · · ·L be the eigenvalues of the uni-

formized matrix P given by equation (29), each with multi-
plicity kl. Without loss of generality, let λ(P )

1 be the eigen-
value equal to 1, and λ(P )

2 a possible eigenvalue equal to 0.
Let b(l,m)

j be the UC of π(P )
j (n). Using equation (3) and
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remark 2.1, and substituting into (31) we have:

π
(Q)
j (t) =

∞∑
n=0

e−q t
(q t)n

n!

[
b
(1,0)
j +

k2−1∑
m=0

b
(2,m)
j δn−m+

L∑
l=3

(λ
(P )
l )n

kl−1∑
m=0

b
(l,m)
j nm

]
=

b
(1,0)
j + e−q t

[
b
(2,0)
j +

k2−1∑
m=1

(q t)m

m!
b
(2,m)
j

]
+

L∑
l=3

e−q t (1−λ
(P )
l )

[
b
(l,0)
j +

kl−1∑
m=1

b
(l,m)
j q(l,m)(t)

]
(32)

where q(l,m)(t) are polynomials in t of degree m (see ap-
pendix C):

q(l,m)(t) =

m∑
i=1

q
(m)
i (q λ

(P )
l )i ti (33)

with the coefficients q(m)
i given by the recurrence relation:

q
(m)
i =

{
1, i = 1∑m−1
k=i−1

(
m−1
k

)
q
(k)
i−1, i = 2, · · ·m

(34)

Let λ(Q)
l , l = 1, · · ·L be the eigenvalues of the infinitesi-

mal generator Q, and a(l,m)
j the UC of π(Q)

j (t). Comparing
equation (22) and (32), it turns out that it must be:

λ
(Q)
l = −q (1− λ(P )

l ) (35)

λ
(P )
l = 1 +

λ
(Q)
l

q
(36)

and a
(l,0)
j = b

(l,0)
j , l = 1, · · ·L. Thus, if there are not

confluent eigenvalues, the UC of π(P )
j (n) and π(Q)

j (t) are
the same (note that thorough the paper it is used confluent
and multiple eigenvalues interchangeably). In the confluent
case, from equations (32) and (33) we have that:

a
(2,m)
j =

qm

m!
b
(2,m)
j , m = 1, · · · k2 − 1 (37)

a
(l,m)
j = (q λ

(P )
l )m

kl−1∑
k=m

q(k)m b
(l,k)
j , m = 1, · · · kl − 1

(38)

Using the definition of eigenvector it is easy to prove that
equations (35) and (36) imply that the eigenvectors of Q
and its uniformized matrix P given by (29), must be the
same. Therefore, if the system of equations (14) is ill-
conditioned for the eigenvectors of Q, so it will be for the
eigenvectors of P. Thus, there is no much advantage in us-
ing the Eigenvectors method with the uniformized matrix P
(except that the numerical tool may compute the eigenval-
ues and eigenvectors more accurately using P than Q).

On the other hand, using the Vandermonde method with
the uniformized matrix P implies building the Vander-
monde matrix using λ(P )

l . This makes a big difference with

respect to the Vandermonde matrix that would be obtained
using λ(Q)

l . In the following the Vandermonde matrices ob-
tained using λ(P )

l and λ(Q)
l will be denoted as V(P ) and

V(Q), respectively. Notice that λ(P )
l must be inside the unit

disk, thus, V(P ) will be possibly much better conditioned
than V(Q). Additionally, by choosing an appropriate value
for q, we can tune the condition number of V(P ).

Summing up, the Uniformized Vandermonde Method
proposed in this paper consists of the following steps:

1. Compute the eigenvalues of Q, λ(Q)
l .

2. Process the eigenvalues λ(Q)
l < 0, merging those that

are near confluent, if any, and limiting the maximum
multiplicity (see remark 6.2). The multiplicity of the
eigenvalue λ(Q)

1 = 0, k1, should be determined by the
number of irreducible closed sets (see appendix A and
remark 4.1).

3. Choose an appropriate value for the uniformization pa-
rameter q (see section 6.1).

4. Compute the uniformized matrix P = I+ 1
qQ. To save

memory space, the matrix P can overwrite matrix Q
in this step, since Q is not needed anymore.

5. Using P and π(0), compute the matrix B using the
algorithm 3.1 (page 4). Then, the matrix P can be
removed, since it is not needed anymore.

6. Compute the eigenvalues of P, λ(P )
l , using equa-

tion (36).

7. Using λ(P )
l , construct the Vandermonde matrix, as ex-

plained in section 3.2.

8. Solve the resulting Vandermonde system to obtain the
UC of π(P )

j (n). If there aren’t confluent eigenvalues,

these are the UC of π(Q)
j (t), and we are done. In case

of confluent eigenvalues, use equations (37) and (38)
to compute the remaining UC of π(Q)

j (t).

9. Use UC of π(Q)
j (t) and the eigenvalues λ(Q)

l in equa-
tion (22) to evaluate the desired transient solution.

Remark 6.1 It is interesting to note that if the uniformized
chain probabilities π(P )

j (n) given by the matrix P (29)

have a limiting distribution, they converge to π(Q)
j (t) at the

points n = [q t], where [x] stands for the integral value of
x. This comes from the fact:

lim
n→∞

Pn = lim
n→∞

(
I +

1

q
Q

)n
=

lim
n→∞

(
I +

tQ

n

)n
= eQ t (39)

Figure 1 gives a pictorial example. The figure shows
π
(Q)
j (q t), j = 0, · · ·N for the M/M/1/N queue analyzed
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Figure 1: π(Q)
j (t) of an M/M/1/10 queue (dashed lines) and

their uniformized chain probabilities π(P )
j (n) (solid lines).

in section 7, and π(P )
j (n). Here, j is the number in the sys-

tem, and the initial state is j = 0. The points of π(P )
j (n)

are connected with solid lines, while π(Q)
j (q t) is depicted

with dashed lines. Note that π(P )
j (n) = 0 for n < j, since

it takes at least j steps to move from state 0 to j. The pa-
rameters are N = 10, µ = 1, and two values of λ: 0.5
and 1. The uniformization parameter has been taken as
q = maxi |(Q)ii| = λ + µ. Recall that the limiting dis-
tribution is given by:

π
(Q)
j (∞) =

{
1

N+1 , λ = µ
(1−ρ) ρj
1−ρN+1 , λ 6= µ

(40)

where ρ = λ/µ. Clearly, in this case the limiting distribu-
tion is the same for both π(P )

j (n) and π(Q)
j (t). If the uni-

formized chain probabilities π(P )
j (n) do not have a limiting

distribution, e.g. because it is periodic, then (39) does not
apply. However, equation (39) was not used to derive the
former equations in this paper, and the Uniformized Vander-
monde method explained before. Thus, the previous results
are not affected by this fact. The following example illus-
trates the Uniformized Vandermonde method, and shows a
uniformized chain having no limiting distribution. �

Example 6.1 Assume a CTMC with

Q =

[
−1 1
1 −1

]
We want the probability of being in state π(Q)

j (t), j = 1, 2

starting from state 1 (π(0) =
[
1 0

]
), using the Uni-

formized Vandermonde method. The eigenvalues of Q are
λ
(Q)
1 = 0, λ(Q)

2 = −2. Choosing the uniformization pa-
rameter q = 1 we have from (36) λ(P )

1 = 1 and λ(P )
2 = −1,

and an uniformized matrix:

P = I +
1

q
Q =

[
0 1
1 0

]
which is clearly periodic. The Vandermonde matrix of the
uniformized chain is:

V(P ) =

[
1 1

λ
(P )
1 λ

(P )
2

]
=

[
1 1
1 −1

]

and the matrix B (see section 3.2):

B =

[
π1(0) π2(0)

(π(0)P)1 (π(0)P)2

]
=

[
1 0
0 1

]
Thus, the UC of the uniformized chain are given by:[

uuu1 uuu2
]
= (V(P ))−1 B =

[
1/2 1/2
1/2 −1/2

]
Since the eigenvalues are not confluent, the UC of π(P )

j (n)

and π(Q)
j (t) are the same, so we have:{

π
(P )
1 (n) = 1/2 + 1/2 (−1)n

π
(P )
2 (n) = 1/2− 1/2 (−1)n

(41)

{
π
(Q)
1 (t) = 1/2 + 1/2 e−2 t

π
(Q)
2 (t) = 1/2− 1/2 e−2 t

(42)

In this case the uniformized chain does not have a limiting
distribution, and the equation (39) does not apply: Clearly,
equations (41) do not converge to equations (42) at the
points n = [q t]. �

Remark 6.2 Having eigenvalues of P near confluent will
make the matrix V(P ) to have repeated rows, and thus,
be ill-conditioned. This may occur due to rounding er-
rors, even if the exact eigenvalues are properly spaced. By
near confluent we mean eigenvalues λ(P )

a and λ
(P )
b such

that |<λ(P )
a − <λ(P )

b | < ε and |=λ(P )
a − =λ(P )

b | < ε,
where < and = are the real and imaginary part respectively,
and ε is a small positive number. To solve this problem it
has been proceed as follows: First, all eigenvalues satisfy-
ing the above inequality, have been merged into confluent
eigenvalues. Additionally, all complex conjugate eigenval-
ues pairs having |=λ(P )

b | < ε have been converted into its
real part. In the numerical experiments of section 7 it was
found convenient to use ε = ((1 + εm)k − 1)0.5, where
εm is the smallest positive floating-point number such that
1 + εm > 1 (the variable .Machine$double.eps in the
numerical tool R [8], used in the experiments), and k is the
number of rows of V(P ).

Another problem may arise in case of having eigenvalues
with large multiplicity. Due to rounding errors, this may
happen even if the original matrix has all its eigenvalues sin-
gle. This could produce huge elements in V(P ) (see (18)),
and the system would become ill-conditioned. To cope with
this problem, the multiplicity of the eigenvalues can been
limited to a maximum value M . In other words, if the mul-
tiplicity kl of an eigenvalue λ(P )

l is kl > M , then it is as-
sumed that the UC a

(l,m)
j = 0 for m =M, · · · kl − 1. Note

that this is equivalent to assume that the geometric multi-
plicity of the eigenvalue is > kl − M (see remark 2.1).
An additional advantage of doing so, is that the size of the
Vandermonde system to solve is reduced. In the numerical
experiments of section 7 it has been set M = 5. �

6.1 Choosing the uniformization parameter
It is common to take the uniformization parameter q =
maxi |(Q)ii|. This is the minimum value that q can have
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for the matrix P to be stochastic. However, in order im-
prove the condition number of the Uniformized Vander-
monde matrix, V(P ), it may be better choosing a higher
value for q (note from (36) that taking q → ∞, all eigen-
values λ(P )

l → 1). First, it has been observed in the nu-
merical experiments that V(P ) is better conditioned hav-
ing all the elements in the non negative x-plane. From
equation (36) we have that this goal can be achieved if
q ≥ |minl <λ(Q)

l |, where minl <λ(Q)
l is the most nega-

tive real part of the eigenvalues of Q. Additionally, if all
the eigenvalues |λ(P )

l | < 1 are close to the origin, then the
terms (λ(P )

l )n of V(P ) will vanish when increasing n, and
V(P ) will be ill-conditioned. To solve this problem we can
proceed as follows. Let k be the number of rows of V(P ),
and λ(P )

m the second largest eigenvalue, in modulus (recall
that the largest is λ(P )

1 = 1). A rule of thumb is choosing q
such that |λ(P )

m |k > ε, for some small positive ε. In the nu-
merical experiments of section 7 it was used ε = εm, where
εm is the smallest positive floating-point number such that
1 + εm > 1. From (36) we have that λ(P )

m = 1 +
λ(Q)
m

q ,

where λ(Q)
m is the second smallest eigenvalue of Q, in mod-

ulus (the smallest is λ(Q)
m = 0). Thus, we have that it must

be: q > |λ(Q)
m |/(1 − ε1/k). Putting all together, the uni-

formization parameter used in the numerical experiments
of section 7 has been chosen has:

q = max

{
max
i
|(Q)ii|, |min

l
<λ(Q)

l |,
|λ(Q)
m |

1− ε1/k

}
(43)

7 Numerical Experiments
In this section three different methods to compute the tran-
sient solution of a CTMC with infinitesimal generator Q are
compared. The following notation is used:

• qevec: Eigenvectors method (see section 5).

• qvand: Vandermonde method, (see section 5.1).

• uvand: Uniformized Vandermonde method, (see sec-
tion 6).

The results have been computed using the R numerical
tool [8] version 2.11.1, with its internal lapack and blas li-
braries. The experiments were done in a PC with a 64 bits
Intel Xeon Dual-Core 2.3 GHz, and 12 GB of RAM.

The experiments have been done using an M/M/1/N
queue, which is one of the few queues for which there exist
a close formula for the transient solution. N ≥ 1 is the sys-
tem capacity. The state of the Markov chain is the number
in the system (so, thorough this section πj(t), 0 ≤ j ≤ N
is the probability of the queue having j customers in the
system at time t), and we assume that the initial state is
j = 0. The system capacity (N ), has been varied between
10 and 104 (note that the number of states of the Markov
chain is N + 1). In the interval [10, 100] all values of N
were computed, since each computation took few seconds.
In the interval (100, 104] there were taken 20 points evenly

spaced in log scale (10 per decade). The service rate has
been set to µ = 1 and the arrival rate have been set to three
different values: λ = 1, 10−3 and 10−6.

The methods are compared against the formula proposed
by Sharma and Tarabia in [10]. For the sake of complete-
ness, the formula has been included in appendix D. Nu-
merical evaluation of Sharma’s formula gives very accurate
results for values of t up to 100 s approximately (see ap-
pendix D).

In order to estimate the error for each of the methods
m = {qevec, qvand, uvand} it has been proceed as follows.
π
(m)
0 (t) have been evaluated at 60 values of t evenly spaced

in log scale in the range (10−1, 102] (20 points per decade).
All values π(m)

0 (t) < 0 and π(m)
0 (t) > 1 where considered

as failed. If the number of failed points was larger than 12
(more than 20% of failed points), it was considered that the
method failed. For the non-failed points, n, it was com-
puted:

error(m) =
1

n

n∑
i=1

(π
(m)
0 (ti)− π(sh)

0 (ti))
2

π
(sh)
0 (ti)

(44)

where π(sh)
0 is the probability obtained with Sharma’s for-

mula.
Figure 2 shows the error obtained in each scenario. The

failed points, or those points where the solver failed to com-
pute the UC, are marked with a dot at error=1. Figure 3
shows the condition number of the matrix used to solve the
UC: The Eigenvectors matrix for qevec, and the Vander-
monde matrices V(Q) and V(P ) for qvand and uvand re-
spectively (see section 6). In figure 3 the points located at
y = 1 mark the scenarios where the solver failed to com-
pute the UC (because rounding errors made the numerical
tool finding the matrix singular). Both figures are in log-log
scale.

Figure 2 shows that qevec is very accurate for λ = 1.
This is because Q is symmetric for λ = 1, and it is known
that Eigenvectors method works very well in this case (see
e.g. [7]). In fact figure 3 shows that the condition number
for λ = 1 in qevec is constant and equal to 1. For λ 6= 1 fig-
ure 3 shows that the condition number for qevec increases
rapidly with increasing N . In fact, the lower is λ, the less
symmetric is Q, and the smaller are the values of N for
which qevec is able to solve the UC. Regarding the method
qvand, figure 3 shows that the condition number increases
rapidly with N for λ = 1 and 10−3, explaining the bad re-
sults observed for this method in figure 2 for these values
of λ. This is because the eigenvalues of Q are out of the
unit circle, and thus, the norm of V(Q) increases rapidly
with increasing N . This can be observed in figure 4. This
figure shows a complex-plane plot of the eigenvalues ob-
tained with the numerical tool for the matrix Q, and the
uniformized matrix P, for N = 1000.

Finally, figure 2 shows that uvand is the only method
that succeeds to solve for all values of λ and N . Figure 3
shows that the condition number of V(P ) is between 1020

and 1025 for most of the values of N . This is a large condi-
tion number, however, figure 2 shows that the error is very
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and uvand methods for N = 100. Values obtained with
Sharma’s formula are plotted with dashed lines.

low for λ 6= 1.

To explain what happens with uvand when λ = 1, fig-
ure 5 depicts the probabilities π(m)

j (t), j = 0, · · · 9 for the
scenarios m = {qevec, uvand} and λ = {1, 10−3, 10−6}
when N = 100. In the interval t ∈ [10−1, 102] the val-
ues obtained with Sharma’s formula are plotted with dashed
lines (note that the error depicted in figure 2 was computed
in this interval). Figure 5 shows that π(uvand)

j (t) starts di-
verging when t is approximately 100 s. In fact, the error
observed in figure 2 in uvand method for N between 10
and 102.5, is because there were taken some samples of
π
(uvand)
j (t) in the region where it diverges. For N > 102.5

the error is negligible because the divergence of π(uvand)
j (t)

starts after the interval considered in the error estimation.

The intuitive explanation of the divergence of
π
(uvand)
j (t) when λ = 1 is the following. The Uni-

formized Vandermonde method can be interpreted as
a fitting of the points of the uniformized probabilities,

π
(P )
j (n), to the samples Pn. In the interval where these

samples are taken, the corresponding probabilities obtained
for π(Q)

j (t) are very accurate (recall from 6.1 that π(P )
j (n)

converges to π
(Q)
j (t) at the points n = q t). If π(P )

j (n)
reaches the stationary distribution within the sampling
interval n = 0, 1, · · · k − 1, then uvand is very accurate
for all values of t. This fact holds for λ = {10−3, 10−6},
but for λ = 1 the probabilities π(Q)

j (t) converge to the
stationary regime very slowly.

The duration of of the transient regime of π(Q)
j (t) is

related with the second smallest eigenvalue, in modulus:
λ∗l = minl,λl 6=0 |λ(Q)

l |. If λ∗l is close to 0, then e−λ
∗
l t will

vanish for large t, thus, with a long transient regime. Define

n∗ = q t∗ =
0.1 q

minl,λl 6=0 |λ(Q)
l |

(45)

Note that e−λ
∗
l t

∗
= e−0.1 ≈ 0.9. Thus, t∗ is an estimation

of the time where π(Q)
j (t) reaches the 10 % of its stationary
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regime. Figure 6 depicts the values of n∗ = q t∗ given by
equation (45). The figure confirms that π(Q)

j (t) converges
very fast to its stationary regime for λ = {10−3, 10−6}, but
very slowly for λ = 1. For instance, when N = 100, n∗ =
{413, 0.26, 0.25} for λ = {1, 10−3, 10−6}, respectively.
The fact that for λ = 1, λ∗l → 0 when N → ∞ explains
also the pike of the condition number in uvand observed in
figure 3.

The divergence problem of the Uniformized Vander-
monde method when λ∗l is close to zero can be fixed as
follows: Compute n∗ given by (45). If n∗ ≤ k (recall the k
is the number of UC to be determined), then build the Van-
dermonde system taking the samples n = 0, · · · k − 1, as it
was done to obtain the results of figure 5. By the samples
we refer to the powers of the eigenvalues used to construct
the Vandermonde matrix V(P ), and the corresponding val-
ues of Pn to build the matrix B (see section 3.2). Other-
wise, if n∗ > k, then build the Vandermonde system taking
k samples evenly spaced in log scale in the interval [0, n∗].
Additionally, the equation that corresponds to the limiting
distribution, π(P )

j (∞), can be added to the system of equa-
tions. Note a QR decomposition can be used to solve an
over-dimensioned system of equations.

Figure 7 shows the computation time in seconds for each
method in the scenario with λ = 1, for the points where
the numerical tool was able to solve the UC. It can be seen
that for values of N up to 102.5, approximately, qevec is
the fastest method. However, for larger values of N the
methods qvand and uvand are faster. This is motivated by
the cost of computing the eigenvectors in the qevecmethod.

An additional advantage of the uvand method is the re-
duction of the required UC in some scenarios. This is shown
in figures 8 and 9, which respectively plot the mean multi-
plicity of the eigenvalues computed by the numerical tool,
and the V(P ) matrix size (number of required UC, k, in
the uvand method). In the extreme case (λ = 10−6 and
N = 104) figure 8 shows that the numerical tool yielded
a mean multiplicity of the eigenvalues equal to 120.5. Fig-
ure 9 shows that only 155 different UC were needed to solve
this scenario. This result comes from the fact that the max-
imum multiplicity was limited to M = 5 (see remark 6.2),

8 Conclusions
In this paper are investigated the class of methods based
on the undetermined coefficients approach to compute the
transient solution of discrete and continuous time Markov
chains (DTMC and CTMC). Two methods that belong to
this class are investigated: The well known Eigenvectors
method and the Vandermonde method. Even if both meth-
ods share the same principle, only the Eigenvectors method
is normally described in the literature. However, Eigenvec-
tors method has the drawback that it can only be used to
solve non defective matrices. The Vandermonde method
does not have this limitation, thus, giving a more general so-
lution. The paper derives the equations required to use the
Vandermonde method for both DTMC and CTMC. Simple
examples are given that show the simplicity of the Vander-
monde method to solve small systems without the help of a
computer.

The Vandermonde method is also exploited to derive in-
teresting relations between a CTMC and its uniformized
chain. The equations that allow computing the undeter-
mined coefficients (UC) of a CTMC in terms of the UC
of its uniformized chain are derived. Based on them, it is
proposed a new approach to compute the transient solution
referred to as the Uniformized Vandermonde method. The
advantage of this method are analyzed through extensive
numerical results. The method is simple to implement and
numerical results show that it has important advantages: (1)
it is not affected by the presence of confluent eigenvalues,
(2) it is very general, i.e. it able to give an accurate solution
in all the scenarios were it was tested, (3) it allows saving
computer memory by merging confluent eigenvalues.
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Appendixes

A Multiplicity of the dominant eigen-
value

Assume a finite Markov chain. Define an irreducible closed
set (ICS)Ck as a set where all states communicate with each
other, i.e. i↔ j,∀ i, j ∈ Ck. In other words, the probability
fij of reaching a state j from a state i is fij = 1, fji =
1, ∀ i, j ∈ Ck, and fil = 0, ∀ i ∈ Ck, l /∈ Ck. Note that
an absorbing state form an ICS of only one element, and
transient states do not belong to any ICS.

Let refer to the eigenvalue λ(P ) = 1 of an stochastic ma-
trix P, and λ(Q) = 0 of an infinitesimal generator Q, as the
dominant eigenvalue.

Theorem A.1 The multiplicity of the dominant eigenvalue
is equal to the number of irreducible closed sets.

Proof. Assume a stochastic matrix P with M irreducible
closed sets: Ck, k = 1, · · ·M . By properly numbering the
states, we can write P as an M block diagonal matrix with
the probabilities of the transient states in the last rows, as
shown in (46) (see [2, chapter XV]). The blocks Pk, k =
1, · · ·M are irreducible stochastic matrices formed with
the probabilities of the irreducible closed sets: Ck, k =
1, · · ·M .

P =


P1

0

0
. . .

PM

≥ 0 T

 (46)

Clearly, the characteristic polynomial of P is equal to
the product of the characteristic polynomials of the sub-
matrices Pk, k = 1, · · ·M and T. Since Pk, k =
1, · · ·M are irreducible stochastic matrices, by the Perron-
Frobenius theorem we know that each of them will have
a single eigenvalue equal to 1. On the other hand, for the
transitorial states it must be limn→∞Tn = 0. Therefore,
all the eigenvalues of T must be |λ(T )

l | < 1, and thus, we
conclude that the multiplicity of the eigenvalue λ(P ) = 1
must be M .

For an infinitesimal generator Q, take any uniformized
matrix P (equation (29)). Clearly, the number of irreducible
closed sets (M ) of Q must be the same as those of its uni-
formized matrix P. Since the multiplicity of the eigenvalue
λ(P ) = 1 must be M , using equation (35) we conclude that
so it must be for the eigenvalue λ(Q) = 0 of Q.

B Derivation of ∂nπj(0)
∂tn

In order to solve the system of equations (26) we need to
compute the derivatives of functions of the type:

πk−1(t) = (a0 + a1 t+ · · ·+ ak−1 t
k−1) eλ t (47)

In this appendix a general formula is obtained. This is nec-
essary to implement a script for solving the system of equa-
tions given by (26). Start by noting that:

∂πk−1(t)

∂t
= [(λa0 + a1) + (λa1 + 2 a2) t + · · ·

(λak−2 + (k − 1) ak−1) t
k−2 + λak−1 t

k−1)
]

eλ t (48)

which is again a polynomial in t of degree (k− 1) times an
exponential. Let identify the coefficients of the polynomial
associated with ∂nπk−1(t)

∂tn by am(n),m = 0, · · · (k−1), and
define the column vector a(n) =

[
a0(n) · · · ak−1(n)

]
.

Note that a(0) =
[
a0 · · · ak−1

]
. By induction it can be

easily obtained that a(n) obeys the systems of linear differ-
ence equations a(n+ 1) = A a(n), where:

Ak×k =


λ 1 0 0 · · ·
0 λ 2 0 · · ·
0 0 λ 3 · · ·
· · ·

 (49)

This system has the solution a(n) = An a(0). Writing
A = λ I + U, where U is the matrix:

Uk×k =


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
· · ·

 (50)

we have that:

An =

n∑
m=0

(
n

m

)
λn−m Um (51)

where U0 = I and Um is a matrix with the m upper diag-
onal equal to:

m!,
(m+ 1)!

1!
,
(m+ 2)!

2!
,
n−k· · · , (k − 1)!

(k −m− 1)!
(52)

for m = 1, · · · k − 1, and Um = 0 for m ≥ k. Note now
that:

∂nπk−1(0)

∂tn
= a0(n) (53)

which is the first component of the vector a(n). Thus, us-
ing (51) and (52) we obtain:

∂nπk−1(0)

∂tn
=

k−1∑
m=0

(
n

m

)
m!λn−m am =

k−1∑
m=0

nm λn−m am (54)

where nm = n (n−1) · · · (n−m+1), nm = 0 for n < m.
Let c(l,m)

j (n) be the coefficient of the equation n of the

system of equations (26) that multiplies the UC a
(l,m)
j of

πj(t). Using (54) we conclude that:

c
(l,m)
j (n) = nm λn−ml (55)
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C Derivation of q(l,m)(t)

In equation (32) we need to compute the following summa-
tion for the eigenvalues with multiplicity higher than 1:

Sm =

∞∑
n=0

(q t)n

n!
(λ

(P )
l )n nm =

∞∑
n=0

xn

n!
nm, m ≥ 1

(56)
where x = q t λ

(P )
l . Clearly, S0 = ex (assuming nm = 1,

∀n for m = 0) and,

Sm =

∞∑
n=0

xn

n!
nm = x

∞∑
n=1

(n− 1 + 1)m−1
xn−1

(n− 1)!

= x

∞∑
n=1

m−1∑
i=0

(
m− 1

i

)
(n− 1)i

xn−1

(n− 1)!
=

x

m−1∑
i=0

(
m− 1

i

)
Si, m ≥ 1 (57)

From (57) it can be easily derived that Sm are eq t λ
(P )
l times

polynomials in t of degree m: Sm = eq t λ
(P )
l q(l,m)(t),

where:

q(l,m)(t) =

m∑
i=1

q
(m)
i (q λ

(P )
l )i ti (58)

with coefficients q(m)
i given by the recurrence relation:

q
(m)
i =

{
1, i = 1∑m−1
k=i−1

(
m−1
k

)
q
(k)
i−1, i = 2, · · ·m

(59)

D Sharma’s Formula
This formula is proposed in [10]. Let be an M/M/1/N queue
with arrival rate λ, service rate µ, and ρ = λ/µ. The prob-
ability that there are n units in the system at time t, πn(t),
given that the queue is empty at time t = 0, can be com-
puted as:

πn(t) = e−(1+ρ)tρn
∞∑
m=0

a(m,n)
tm

m!
, 0 ≤ n ≤ N (60)

where:

a(m,n) =

0, m < n

1, m = n

[m−n
2 ]∑

r=0

[ r
N+1 ]∑
i=0

A(m, r−(N+1) i) ρr−

m−n∑
r=[m−n

2 +1]

[n−N−r
N+1 ]∑
i=0

A(m, r+(N+1)(i+1)) ρr, m > n

and: A(m, s) =
(
m
s

)
−
(
m
s−1
)
, taking

(
b
a

)
as zero when-

ever b < a or b < 0. [x] stands for the integral value of

x. In [10] it is also given a recurrence relation for the co-
efficients a(m,n), but it was found faster to compute them
using the equation above. To evaluate (60) we need to trun-
cate the summation. Numerical experiments showed that
for values of t up to 100 s, approximately, the terms of the
summation vanish rapidly. Note that the larger is t, the more
terms need to be considered, which becomes numerically
unfeasible for the combinatorial coefficients of the equa-
tion.
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