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Abstract—CUDA and OpenCL are the most widely used
programming models to exploit hardware accelerators. Both
programming models provide a C-based programming language
to write accelerator kernels and a host API used to glue the host
and kernel parts. Although this model is a clear improvement
over a low-level and ad-hoc programming model for each
hardware accelerator, it is still too complex and cumbersome
for general adoption. For large and complex applications using
several accelerators, the main problem becomes the explicit
coordination and management of resources required between the
host and the hardware accelerators that introduce a new family
of issues (scheduling, data transfers, synchronization, ...) that the
programmer must take into account.

In this paper, we propose a simple extension to OmpSs –a
data-flow programming model– that dramatically simplifies the
integration of accelerated code, in the form of CUDA or OpenCL
kernels, into any C, C++ or Fortran application. Our proposal
fully replaces the CUDA and OpenCL host APIs with a few
pragmas, so we can leverage any kernel written in CUDA C
or OpenCL C without any performance impact. Our compiler
generates all the boilerplat code while our runtime system takes
care of kernels scheduling, data transfers between host and ac-
celerators and synchronizations between host and kernels parts.
To evaluate our approach, we have ported several native CUDA
and OpenCL applications to OmpSs by replacing all the CUDA
or OpenCL API calls by a few number of pragmas. The OmpSs
versions of these applications have competitive performance and
scalability but with a significantly lower complexity than the
original ones.

Index Terms—Accelerator, CUDA, OpenCL, OmpSs

I. INTRODUCTION

Hardware accelerators provide better performance and en-
ergy efficiency than traditional processors for a wide range
of workloads. However, hardware design and software de-
velopment costs have traditionally hindered a wider adoption
of these technologies. This trend started to change with the
introduction of programmable GPUs and the CUDA SDK by
NVIDIA. The use of commodity hardware paired with a more
developer-friendly programming model reduced both hardware
design and software development costs.

With the introduction of CUDA [1] and OpenCL [2] the
rate of adoption of hardware accelerators in general and GPUs
in particular is growing at a fast rate. The development of
the OpenCL standard has enabled the proliferation of many
types of accelerators such as embedded SoC (ARM Mali), the
Intel Xeon Phi, the Cell/BE or FPGAs boards, which have

a native programming model, but also support the OpenCL
standard. CUDA and OpenCL are a great advance over low-
level and device specific programming techniques, which have
helped the adoption of hardware accelerators on many fields
where the performance gains paid off the higher develop-
ment costs associated with CUDA and OpenCL. However,
most large and complex applications still cannot benefit from
hardware accelerator. The main reason is that rewriting these
applications from scratch is not an option and modifying them
incrementally is still a complex and error prone task that most
developers cannot afford with current tools.

In this paper, we extend the OmpSs [3] programming model
to ease integration of OpenCL C and CUDA C kernels into
an existing application written in C/C++ or Fortran. OmpSs
is a programming model that is able to execute sequential
programs in a data-flow way. To that end, OmpSs uses the
information supplied by the programmer, via code annotations
with pragmas, to determine –at run-time– which parts of the
code can run be in parallel. In this paper, we present a new
ndrange clause that, in conjunction with the input and output
clauses, allows OmpSs to transparently manage data transfers
from the host to the accelerator and vice versa, providing the
illusion of a single address space and transparently running
CUDA C and OpenCL C kernels on the available accelerators.

Thus, OmpSs not only eliminates all the boilerplate code
required to execute a kernel on a hardware accelerator but also
effectively reliefs the programmer from manually scheduling
kernels and managing data transfers from/to hardware ac-
celerators. With the extensions to OmpSs presented in this
work developers can use any CUDA C or OpenCL C kernel
like a regular C function, even from a Fortran application.
Hence, the programmer only needs to focus on writing kernels
with CUDA C or OpenCL C, making the integration of these
kernels with large and complex applications a straightforward
task. Our approach also makes trivial the simultaneous use of
several accelerators, even if the programmer mixes OpenCL
and CUDA kernels, as the run-time system takes care of all
the low-level details.

We have evaluated the performance of our proposal porting
several CUDA and OpenCL applications to OmpSs. The
results show that our approach is much more productive, and
it has same or better performance than the hand-optimized
native applications.



The rest of the paper is organized as follows: Section II
introduces both CUDA and OpenCL and re-examines some
relevant related works. Section III introduces the OmpSs pro-
gramming models and the extensions presented in this paper.
Section IV describes the applications used for the evaluation
performed in Section V, where we study the productivity,
performance and scalability of OmpSs. Finally, we draw
conclusions and outline some future work in Section VI.

II. PROGRAMMING MODELS FOR HARDWARE
ACCELERATORS

The growing popularity of hardware accelerators has en-
couraged researchers and industry to develop novel program-
ming models to make the most of these new compute devices
with a moderate effort. CUDA was the first mainstream
programming model widely used to exploit GPUs. A stan-
dardization effort to exploit hardware accelerators have led to
the development of OpenCL, which is the only programming
model that can exploit a variety of accelerators. In the rest
of this section, we will summarize the main features of both
CUDA and OpenCL, as well as some other related work.

A. CUDA

CUDA (formerly Compute Unified Device Architecture)
was first introduced back in 2007 by NVIDIA to exploit
the GPUs computational power. The CUDA SDK provides a
host API to manage computational kernels that are written in
CUDA C. The host API is mainly used to configure the kernel
arguments, to explicitly manage the GPU memory (allocation
and memory transfers from/to the host memory) and to manage
synchronization between host code and accelerator code. On
the other hand, the CUDA C programming language is a C-
based programming model specially designed to exploit the
parallel nature of the GPU hardware. Hence, the host API
works as a glue between the main program written in C or
C++ and the kernels written in CUDA C. The complexity of
developing a CUDA application is clearly split in two different
parts. The first one is related to the development of optimized
CUDA C kernels that can exploit the GPU hardware, and the
second one is related to the integration of these optimized
kernels with the main application. The first part can be
alleviated with the use of kernel libraries, such as CUBLAS
[4], or programming models such as OpenMP 4.0 or OpenACC
that can run sequentially written code on accelerators, but the
second one cannot be avoided and it is specially complex
and hard to overcome for legacy applications that were not
designed with CUDA in mind. Despite these shortcomings,
CUDA is widely used in many fields where the benefits of
using this hardware paid off the higher development cost.
However, there are still many applications where the expected
benefits of using GPUs are not enough to re-write them in
CUDA or OpenCL.

B. OpenCL

OpenCL was first developed by Apple and then submitted
to the Khronos group, which published the first specification

at the end of 2008. Since then many vendors such as IBM,
Intel, NVIDIA, Samsung or AMD, have announced their own
OpenCL SDK for a wide range of hardware platforms: from
many-core processors to SoC, GPUs or even FPGAs. The
philosophy behind OpenCL is similar to CUDA: a host API
to explicitly manage the hardware accelerators and a OpenCL
C programming language to write the computational kernels.
Thus, the same advantages and drawbacks from CUDA apply
to OpenCL. The major difference is that the OpenCL API is a
bit more low-level and all the kernels must be explicitly com-
piled at run-time before they can run on a given accelerator.
Hence, the complexity of developing a OpenCL application is
comparable to developing a CUDA application as well as the
expected performance gain.

Listings 1 and 2 shows the required code to implement a
program that performs a SAXPY operation. The first listing
correspond to the kernel code written in OpenCL C, which
will run in the accelerator.

Listing 1: OpenCL C kernel code
k e r n e l void saxpy ( i n t n , f l o a t a ,

g l o b a l f l o a t ∗ x , g l o b a l f l o a t ∗ y )
{

i n t i = g e t g l o b a l i d ( 0 ) ;
i f ( i < n )

y [ i ] = a ∗ x [ i ] + y [ i ] ;
}

The second listing shows the part of the application that will
run on the host side. As we can see, all the code between lines
9 and 46 are only to setup the environment. This steps include:
selecting and initializing the device in which the kernel will
run (lines 9 - 21), compile the OpenCL C kernel (lines 27-30),
copy the data from the host to the device (lines 32-40) and set
the parameters of the kernel (lines 42-46). Once everything
is in place the kernel can be executed (lines 49-52). When
the result is ready, we need to copy back the data to the host
memory (line 54-55). Finally some more API calls are required
to free all the resources used (lines 59-64).

Listing 2: OpenCL Host code
1 # i n c l u d e ”CL / c l . h ”
2 # d e f i n e DEV CL DEVICE TYPE DEFAULT
3
4 i n t main ( i n t argc , char∗∗ a rgv )
5 {
6 f l o a t a , h x [ 1 0 2 4 ] , h y [ 1 0 2 4 ] ;
7 / / I n i t a , h x and h y ;
8
9 c l u i n t numPla t s ;

10 c l G e t P l a t f o r m I D s ( 0 , 0 , &numPla t s ) ;
11
12 c l p l a t f o r m i d P l a t [ numPla t s ] ;
13 c l G e t P l a t f o r m I D s ( numPlats , P l a t , 0 ) ;
14
15 c l G e t D e v i c e I D s ( P l a t [ i ] , DEV, 1 , &id , 0 ) ;
16
17 c l c o n t e x t c t x = c l C r e a t e C o n t e x t (
18 0 , 1 , &id , 0 , 0 , 0 ) ;
19
20 cl command queue cmd =



21 clCreateCommandQueue ( c tx , id , 0 , 0 ) ;
22
23 c l p r o g r a m program =
24 c l C r e a t e P r o g r a m W i t h S o u r c e ( c tx , 1 ,
25 Kerne lS rc , 0 , 0 ) ;
26
27 c l B u i l d P r o g r a m ( program , 0 , 0 , 0 , 0 , 0 ) ;
28
29 c l k e r n e l ko saxpy = c l C r e a t e K e r n e l (
30 program , ” saxpy ” , 0 ) ;
31
32 cl mem d x = c l C r e a t e B u f f e r ( c tx , 0 ,
33 s i z e o f ( f l o a t ) ∗ n , 0 , 0 ) ;
34 cl mem d y = c l C r e a t e B u f f e r ( c tx , 0 ,
35 s i z e o f ( f l o a t ) ∗ n , 0 , 0 ) ;
36
37 c l E n q u e u e W r i t e B u f f e r ( cmd , d x , CL TRUE ,
38 0 , s i z e o f ( f l o a t ) ∗ n , h x , 0 , 0 , 0 ) ;
39 c l E n q u e u e W r i t e B u f f e r ( cmd , d y , CL TRUE ,
40 0 , s i z e o f ( f l o a t ) ∗ n , h y , 0 , 0 , 0 ) ;
41
42 c l S e t K e r n e l A r g ( ko saxpy , 0 , 4 , &n ) ;
43 c l S e t K e r n e l A r g ( ko saxpy , 1 , 4 , &a ) ;
44 s i z e t s z e = s i z e o f ( cl mem ) ;
45 c l S e t K e r n e l A r g ( ko saxpy , 2 , sze , &d x ) ;
46 c l S e t K e r n e l A r g ( ko saxpy , 3 , sze , &d y ) ;
47
48 s i z e t g l o b a l = 1024 , l o c a l = 128 ;
49 clEnqueueNDRangeKernel ( cmd , ko saxpy ,
50 1 , 0 , &g l o b a l , &l o c a l , 0 , 0 , 0 ) ;
51
52 c l F i n i s h ( commands ) ;
53
54 c lE n q ue u eR e ad B u f f e r ( commands , d y ,
55 CL TRUE , 0 , 4 ∗ n , h y , 0 , 0 , 0 ) ;
56
57 p r i n t f ( ”%f , h y [ 0 ] ) ;
58
59 c lRe leaseMemObjec t ( d x ) ;
60 c lRe leaseMemObjec t ( d y ) ;
61 c l R e l e a s e P r o g r a m ( program ) ;
62 c l R e l e a s e K e r n e l ( ko saxpy ) ;
63 clReleaseCommandQueue ( commands ) ;
64 c l R e l e a s e C o n t e x t ( c t x ) ;
65 r e t u r n 0 ;
66 }

C. Related Work

The widespread adoption of heterogeneous systems have
raised the question about their programmability. Some early
work, such as [5] and [6], already explored ways to integrate
OmpSs dataflow model with CUDA and OpenCL. This first
approach was limited to C, using an outline SMP task to call
the native kernels using the CUDA syntax or linking the object
code produced by the OpenCL compiler. The main drawback
of this approach was that the outlined SMP task has to be hand-
written by the programmer, who will see pointers from the
accelerator address spaces on the host side of the application,
making this approach less robust and more error-prone than
the one proposed in this paper. Moreover, OpenCL was only
supported for CPU devices.

The CAPS HMPP [7], OpenACC [8] or OpenMP 4.0 [9]
programming models are a set of compiler directives, tools

and runtimes that supports parallel programming in C and
Fortran. HMPP and OpenACC are based on codelets that
define functions that will be run in a hardware accelerator.
These codelets can either be handwritten for a specific archi-
tecture or be generated from sequential C or Fortran code
like in OpenMP 4.0. However, the programmer still needs
to explicitly orchestrate how memory is allocated and data
transfered between the host and the accelerator address spaces
with some specific pragmas. The synchronization of host and
kernel code must also have to be explicitly done with some
pragma annotations. Thus, the main benefit of these methods
is that they relief the programmer from writting in CUDA
C or OpenCL C, while our approach focus on replacing the
host API of CUDA and OpenCL by the OmpSs data-flow
model, which transparently do all the memory managment and
code synchronization. The Intel offload directives [10] for the
Xeon Phi works in a similar way to OpenACC, automatically
compiling the code for the accelerator, but it also requires
the explicit management of data transfers between the host
and the accelerator. Offload [11] is a programming model for
offloading portions of C++ applications to run on accelerators.
Code to be offloaded is wrapped in an offload block, indicating
that the code should be compiled for an accelerator, and
executed asynchronously as a separate thread. Call graphs
rooted at an offload block are automatically identified and
compiled for the accelerator. Data movement between host
and accelerator memories is also handled automatically.

Merge [12] encapsulates specialized languages targeting
accelerators (GPUs, FPGAs) in C/C++ functions to provide
a uniform interface for them. Encapsulation is based on EX-
OCHI [13], which uses pragmas to offload the domain specific
language to be compiled with the compiler of the target
device. Merge allows the specification of the same function for
different targets, as new intrinsic functions, and it provides the
mechanism for dynamic function selection at run-time. StarPU
[14] provides numerical kernel designers with a convenient
way to generate parallel tasks over heterogeneous hardware on
the one hand, and easily develop and tune powerful scheduling
algorithms on the other hand. StarPU is based on a tasking
API and also on the integration of a data-management facility
with a task execution engine. With regard to data management,
StarPU proposes a high level library that automates data
transfers throughout heterogeneous machines [15]. In StarPU
codelets are defined as an abstraction of a task (e.g., a matrix
multiplication) that can be executed on a core or offloaded onto
an accelerator using an asynchronous continuation passing
paradigm. StarPU offers low level scheduling mechanisms
(e.g., work stealing) so that scheduler programmers can use
them in a high level fashion, regardless of the underlying
(possibly heterogeneous) target architecture. While OmpSs
and StarPU present several similarities with regard to the
execution model, StarPU is implemented as a library and
therefore the programmer is exposed to low-level APIs and
execution details that are hidden in the OmpSs case because
the Mercurium compiler generates the necessary outline func-
tions and boilerplat code with the information provided on the



ndrange clause. The management of GPUs in Charm++ [16] is
done through the Charm++ GPU Manager. The Charm++ GPU
Manager is a library designed to automate the management
of GPUs. Users of the GPU Manager define work requests
which specify the GPU kernel and any data transfer operations
required before and after completion of the kernel. The system
controls the execution of the work requests submitted by all the
chares on a particular processor. This allows it to effectively
manage execution of work requests and overlap CPU-GPU
data transfers with kernel execution. In steady-state operation,
the GPU Manager overlaps kernel execution of one work
request with data transfer out of GPU memory for a preceding
work request and the data transfer into GPU memory for a
subsequent work request.

III. OMPSS TO EXPLOIT HARDWARE ACCELERATORS

OmpSs is a directive-based programming model that enables
the execution of sequential programs in a data-flow way.
Listing 3 shows the previous SAXPY example implemented
in OmpSs (with no support for GPUs). The programmer only
needs to specify that the x vector of size n is going to be
read (in) and that the y vector of size n is going to be read
and written (inout). The pragma taskwait is to ensure that the
result is ready before it is actually printed. These annotations
are interpreted by the Mercurium source-to-source compiler,
which emits calls to the run-time system Nanos++. Nanos++
uses the information provided by these user annotations to
build dynamically a task dependency graph, which is used
to schedule tasks in a data-flow way. We have extended the
OmpSs programming model to support directly tasks written
in CUDA C or OpenCL C, freeing developers from writing
all the boilerplate code required to explicitly schedule kernels
and manage data transfers, specially on multi-accelerator and
distributed systems. All the details are on Section III-C

Listing 3: OmpSs saxpy example
#pragma omp t a s k i n ( [ n ] x ) i n o u t ( [ n ] y )
void saxpy ( i n t n , f l o a t a , f l o a t ∗ x , f l o a t ∗ y ) {

f o r ( i n t i =0 ; i<n ; i ++)
y [ i ] = a ∗ x [ i ] + y [ i ] ;

}

i n t main ( i n t argc , char∗ a rgv [ ] ) {
f l o a t a , x [ 1 0 2 4 ] , y [ 1 0 2 4 ] ;

saxpy ( 1 0 2 4 , a , x , y ) ;

#pragma omp t a s k w a i t
p r i n t f ( ”%f , y [ 0 ] ) ;
r e t u r n 0 ;

}

A. Mercurium

Mercurium is a source-to-source compiler that provides the
OmpSs programming model for C/C++ and Fortran languages.
Mercurium parses and analyzes the pragma directives provided
by the programmer, then the original code is augmented with
calls to the Nanos++ run-time. The Mercurium compiler also

generates the function stubs required to call CUDA C and
OpenCL C kernels, from C/C++ or Fortran host code. Finally,
Mercurium calls the appropriate native compiler (gfortran,
icpc, xlc, ...) to generate the host side of the application,
which is linked with Nanos++. The CUDA C kernels are
also compiled and linked at compilation time with the nvcc
compiler, while the OpenCL kernels are saved as strings in
the host binary and automatically compiled at run-time the
first time they are executed.

B. Nanos++

Nanos++ is a modular, extensible and portable execution
run-time for parallel and distributed systems. The program-
ming models supported by this run-time include OmpSs [3],
OpenMP [17] and Chapel [18]. Nanos++ uses a task–based ap-
proach to exploit parallelism, while also providing support for
synchronizations based on data–dependencies. Moreover, data
parallelism is also supported on top of the task support. The
cluster version of Nanos++ enables the distributed execution
of task using a software directory and data–cache, which keeps
program consistency and coherency across the whole cluster.
GasNET [19] is used as the low–level networking layer used
to exchange messages between nodes.

C. NDRANGE clause

To support CUDA C and OpenCL C kernels we have added
the NDRANGE clause to the programming model. This clause
contains the information required to configure and launch a
kernel. With the information of the NDRANGE clause and
the information provided by the in, out and inout clauses the
compiler and the run-time have all the required information to
transparently run CUDA or OpenCL kernels from C/C++ or
Fortran.

Listing 4: ndrange clause definition
#pragma omp t a r g e t d e v i c e ( o p e n c l | cuda ) \

ndrange ( work dim , gwork s ize , l w o r k s i z e )
#pragma omp t a s k i n ( . . . ) o u t ( . . . )
c u d a o r o p e n c l k e r n e l d e c l a r a t i o n ( . . . . )

Listing 4 shows how the target device construct is used
to specify the type of a kernel (either cuda or opencl)
while the ndrange clause is used to configure the number
of dimensions (work dim), the global size of each dimension
(gwork size) and the number of work-items of each work-
group (lwork size). These parameters are the same used on
the OpenCL clEnqueueNDRangeKernel (see Listing 2, line 49-
50) API call and equivalent to the ones provided with CUDA
special syntax.

Listing 5: Example of NDRANGE directive

#pragma omp t a s k i n ( [ n ] x ) i n o u t ( [ n ] y )
#pragma t a r g e t d e v i c e ( o p e n c l ) \

ndrange ( 1 , n , 128) copy deps
k e r n e l void saxpy ( i n t n , f l o a t a ,

g l o b a l f l o a t ∗ x , g l o b a l f l o a t ∗ y )
{

i n t i = g e t g l o b a l i d ( 0 ) ;



i f ( i < n )
y [ i ] = a ∗ x [ i ] + y [ i ] ;

}

# d e f i n e N 1024
i n t main ( i n t argc , char∗ a rgv [ ] ) {

f l o a t a , x [N] , y [N ] ;

saxpy (N, a , x , y ) ;

#pragma omp t a s k w a i t
p r i n t r e s u l t ( y , N) ;
re turn 0 ;

}

Listing 5 shows the previous SAXPY example written in
OmpSs+OpenCL C. The example contains both host side and
accelerator side of the application (our compiler support both
single source as well as separate files for host and accelerator
code). It is worth noting that no call to the OpenCL host API is
necessary to launch a kernel, the syntax used is just plain C and
three pragmas. Compared with the previous OmpSs version of
SAXPY we have only added the pragma target device with the
ndrange clause. The Mercurium compiler will generate all the
required boilerplate code to call the OpenCL SAXPY kernel,
as shown in Listing 6 (simplified for the sake of clarity). The
original call to the SAXPY kernel has been replaced to a
call to the Nanos++ API to create a new task, which will be
inserted on the dependency graph (with the information from
the input and output clauses). Once the task is ready and there
is one accelerator available, the function saxpy outline will be
executed by a thread on the host. This function will compile
(if necessary) and create a kernel that can run on the available
accelerator. Then the information of the ndrange clause will be
used to configure the kernel and the original parameters of the
saxpy call will be forwarded to the kernel (and translated in
the case of arrays). At this point, the Nanos++ run-time will
take care of all the data managements (allocation, transfers,
...) using the plain OpenCL API on the selected device. It
is worth nothing that Nanos++ do not rely on the OpenCL
or CUDA API for inter-kernel and/or task synchronization
because this work is done on the dynamic task dependency
graph. Nanos++ directory and cache system have also been
extended to manage data transfers across host and accelerators,
ensuring data coherence and allowing mixed execution of
OpenCL and CUDA kernels. With these extensions, a regular
C/C++ or Fortran application can easily leverage the power of
multi-hardware accelerators with just a few OmpSs directives,
so the integration of CUDA and/or OpenCL kernels with an
existing application requires a minimal effort.

Listing 6: NDRANGE code transformation

# d e f i n e N 1024
i n t main ( i n t argc , char∗ a rgv [ ] ) {

f l o a t a , x [N] , y [N ] ;

s a x p y a r g s t a r g s = {N, a , x , y } ;
n d r a n g e a r g s t nd range = {1 , N, 128 , 0} ;

n a n o s c r e a t e n e w t a s k (& s a x p y o u t l i n e ,
&args , &ndrange ) ;

n a n o s w a i t f o r t a s k s ( ) ;
p r i n t r e s u l t ( y , N) ;
re turn 0 ;

}

void s a x p y o u t l i n e ( s a x p y a r g s t ∗ a rgs ,
n d r a n g e a r g s t ∗ ndrange ) {

void ∗ k e r n e l = n a n o s c r e a t e k e r n e l ( ” saxpy ” ,
pa th , o p t ) ;

n a n o s s e t a r g ( 0 , k e r n e l , a rgs−>n , s i z e o f ( i n t ) ;
n a n o s s e t a r g ( 1 , k e r n e l , a rgs−>a , s i z e o f ( f l o a t )

n a n o s s e t c a c h e a r g ( 2 , k e r n e l ,
n a n o s c a c h e t r a n s l a t e a d d r ( a rgs−>x ) ) ;

n a n o s s e t c a c h e a r g ( 3 , k e r n e l ,
n a n o s c a c h e t r a n s l a t e a d d r ( a rgs−>y ) ) ;

n a n o s e x e c k e r n e l ( ndrange−>dim , 0 /∗ o f f s s e t ∗ / ,
ndrange−>g l o b a l , ndrange−>l o c a l , k e r n e l ) ;

}

IV. SELECTED APPLICATIONS

We have evaluated our approach with six benchmark that
have been ported from CUDA to OpenCL or vice versa and
then to OmpSs. The port of the computational kernels from
CUDA C to OpenCL C have been straightforward as both
languages are very similar, but the adaptation of the host side
has been more complex, specially on the benchmarks that does
not follow a fork-join parallelism and uses event to perform
complex synchronizations. The conversion of native CUDA
or OpenCL versions to OmpSs was easy, as we only need to
get rid of CUDA and OpenCL host API calls and add a few
pragmas to annotate the input and output of the computational
kernels. Thus we have four version of each benchmark: native
OpenCL, native CUDA, OmpSs + OpenCL C and OmpSs
+ CUDA C. It is worth noting that the host side of both
OmpSs versions are the same, as well as the kernels used,
which are copied verbatim from the native versions. The rest
of the Section explains the most relevant characteristics of
the selected benchmarks with special enphasis on the OmpSs
version of each benchmark.

A. Matrix Multiply (Matmul)

This benchmark performs a blocked matrix multiplication
of two input matrices (A, B) and produce an output matrix (C).
Listing 7 shows the declaration of the OpenCL C kernel used
to perform each tile operation which is part of the AMD APP
SDK [20]. Matrix C is initialized to zero and then a simple
block-matrix multiplication algorithm is applied. Each call to
the Muld kernel performs a matrix multiplication on blocks of
NB*NB size. The OmpSs data-flow excution model enables
the parallel execution of several of these kernels, that can
simultaneously run on several hardware accelerators. As we
can see, there is no need to specify any data transfer between
host and accelerator or vice versa as our runtime system takes



care of all the details. The Native CUDA and OpenCL versions
are much more complex because the programmer must explic-
itly orchestrate the parallel execution and synchronization of
several kernels to obtain an acceptable level of performance,
while in the OmpSs case the runtime automatically caches the
data to improve data locality and minimize the host to/from
device data transfers.

B. NBody

An N-body simulation [21] numerically approximates the
evolution of a system of bodies in which each body continu-
ously interacts with every other body. Each timestep (iteration)
of the simulation process can be decomposed into several parts
that can be computed in parallel (in a fork-join way). The
aggregate output of all the parts for one iteration becames the
input of the next one.

The code in Listing 8 shows how easy is with OmpSs
to mix OpenCL C and CUDA C kernels. As we can see
on the loop that iterates over the full vector of particles,
we can easily combine calls to CUDA C and OpenCL C
kernels. In this concrete example, even partitions are calculated
with a OpenCL C kernel while odd partitions are calculated
with a CUDA C kernel. It is worth noting that the Nanos++
runtime performs all the device-to-host and host-to-device
copies between OpenCL and CUDA devices.

C. Krist

The Krist application [22] is used on crystallography to find
the exact shape of a molecule using Rntgen diffraction on
single crystals or powders. This application has been ported
from C to Fortran to show how our ndrange clause works
on Fortran. We take advantage of the standard INTERFACE
construction used in Fortran to call C functions to be able to
specify the signature of the OpenCL C or CUDA C kernels.
That information is augmented with the target device pragma
and the ndrange clause as well as with the usual OmpSs
definition of inputs and outputs. As we can see on Listing
9, once the kernel have been declare with an appropiate
interface and annotated with the corresponding pragmas, we
can use it like a regular Fortran subroutine. This application is
also interesting because it requires the use of shared memory
inside a grid in CUDA terminology or local memory inside a
workgroup in OpenCL terminology. To specify the amount of
shared memory we have added an shmem clause that indicates
the amount of memory that will be used as shared memory.
This is enough for CUDA, because only one shared space
can be used but in OpenCL we need to augment that clause to
support multiple shared variables. To that end, we also support
the specification of several sizes delimited by a comma, that
are assigned in consecutive order to the pointer parameters of
the OpenCL C kernels that are neither in or out parameters.
Both C and Fortran versions of Krist have similar performance.

D. Julia

The Julia Set benchmark provided by the IBM OpenCL
SDK [23] has an input describing both the fractal to be

generated and the output image data. This code have been
ported from OpenCL to CUDA and then to OmpSs, but the
native versions only supported a single device so the host
side code has been fully re-designed to work with several
accelerators. An snippet of the OmpSs version of the code
are shown on Listing 10. The benchmarks are annotated so
that each task generates an horizontal slice of the image of
height BS lines.

E. NBody MPI

The original NBody code has been augmented with MPI
to run on a clusters of accelerators. There is a hierachical
partition of each iteration which is first split across the number
of nodes, and then split again across the two accelerators
availables on each node. The OpenCL C and CUDA C kernels
from the original NBody have not required any modification.
Listing 11 shows how each iteration is split with MPI and
then the result calculated by each node sent back to all other
nodes because it will be used as the input of the next iteration.
OmpSs is specially well suited to write hybrid MPI+OmpSs
applications because its dataflow execution model allows to
exploit multi-core processors inside each MPI process and also
limits the effect of load inbalance across them. The ndrange
clause presented in this paper perfectly suits this OmpSs+MPI
hybrid approach, simplifying the development of distributed
applications that can exploit hardware accelerators.

V. EVALUATION

We have evaluated our approach with six applications
described in the previous section. Each benchmark has been
ported from CUDA to OpenCL or vice versa and then to
OmpSs. Hence there are four different flavors of each appli-
cation: native CUDA, native OpenCL, OmpSs+CUDA C and
OmpSs+OpenCL C.

All the benchmarks, but the NBody MPI, were evaluated
on a compute node with two Intel Xeon E5645 24-Core at 2.4
GHz running Linux operating system with 104GB of RAM
memory, 12 MB of cache, equipped with 8 NVIDIA M2050
cards each one with 448 CUDA cores and 3GB of GDDR5
memory. For the NBody MPI benchmark, we have used 32
nodes interconnected with an Infiniband QDR network, but
with only two NVIDIA M2090 cards per node.

On the rest of this section, we compare our approach from
three different points of view: productivity, performance and
scalability.

Productivity: The objective of the proposal presented on
this paper is to improve the programmability of hardware
accelerators, in particular the ones that support CUDA or
OpenCL. To that end we propose to get rid of the CUDA API
and OpenCL API in favor of the OmpSs programming model
but leveraging the kernels written in CUDA C or OpenCL C.
Our rationale is that, for most large and complex applications,
the biggest challenge is to orchestrate and integrate the host
side of the application with the accelerated part of the applica-
tion. On the other hand, the development of high performance
OpenCL C or CUDA C kernels can also be a hard task, but



Listing 7: Matrix Multiply
#pragma omp t a r g e t d e v i c e ( o p e n c l ) nd range ( 2 , NB, NB, BL SIZE , BL SIZE ) copy deps
#pragma omp t a s k i n o u t ( [NB∗NB]C) i n ( [NB∗NB]A, [ NB∗NB]B)

k e r n e l void Muld ( g l o b a l REAL∗ A, g l o b a l REAL∗ B , i n t wA, i n t wB,
g l o b a l REAL∗ C , i n t NB) ;

void matmul ( i n t m, i n t l , i n t n , i n t mDIM, i n t lDIM , i n t nDIM ,
REAL ∗∗ t i l e A , REAL ∗∗ t i l e B , REAL ∗∗ t i l e C ) {

f o r ( i n t i = 0 ; i < mDIM; i ++){
f o r ( i n t k = 0 ; k < lDIM ; k ++){

f o r ( i n t j = 0 ; j < nDIM ; j ++){
Muld ( t i l e A [ i ∗lDIM+k ] , t i l e B [ k∗nDIM+ j ] , NB, NB, t i l e C [ i ∗nDIM+ j ] , NB) ;

}
}

}
}

Listing 8: NBody code
#pragma omp t a r g e t d e v i c e ( o p e n c l ) nd range ( 1 , s i z e , 1 2 8 ) copy deps
#pragma omp t a s k o u t ( [ s i z e ] o u t ) i n ( [ p a r t i c l e s ] p a r t )

k e r n e l void c a l c u l a t e f o r c e o p e n c l ( i n t s i z e , f l o a t t ime , i n t p a r t i c l e s ,
g l o b a l P a r t ∗ p a r t , g l o b a l P a r t ∗ out , i n t f i r s t , i n t l a s t ) ;

#pragma omp t a r g e t d e v i c e ( cuda ) nd range ( 1 , s i z e , 1 2 8 ) copy deps
#pragma omp t a s k o u t ( [ s i z e ] o u t ) i n ( [ p a r t i c l e s ] p a r t )

g l o b a l void c a l c u l a t e f o r c e c u d a ( i n t s i z e , f l o a t t ime , i n t p a r t i c l e s ,
P a r t ∗ p a r t , P a r t i c l e ∗out , i n t f i r s t , i n t l a s t ) ;

void P a r t i c l e a r r a y c a l c u l a t e f o r c e s ( P a r t i c l e ∗ i n p u t , P a r t i c l e ∗ o u t p u t ,
i n t p a r t i c l e s , f l o a t t ime ) {

c o n s t i n t bs = p a r t i c l e s / n a n o s g e t t o t a l n u m d e v i c e s ( ) ; / / OpenCL + CUDA d e v i c e s
a s s e r t ( p a r t i c l e s % n a n o s g e t t o t a l n u m d e v i c e s ( ) == 0) ;
f o r ( i n t i = 0 ; i < p a r t i c l e s ; i += bs ) {

i f ( i % 2 == 0)
c a l c u l a t e f o r c e o p e n c l ( bs , t ime , p a r t i c l e s , i n p u t , &o u t p u t [ i ] , i , i +bs−1) ;

e l s e
c a l c u l a t e f o r c e c u d a ( bs , t ime , p a r t i c l e s , i n p u t , &o u t p u t [ i ] , i , i +bs−1) ;

}
}

Listing 9: Krist Snippet
INTERFACE

!$OMP TARGET DEVICE(OPENCL) COPY DEPS NDRANGE( 1 , NR, 128) SHMEM(16384−2048) FILE ( k r i s t . c l )
!$OMP TASK IN (A, H) OUT( E )
SUBROUTINE CSTRUCTFAC(NA, NR, NC, F2 , DIM NA, A, DIM NH, H, DIM NE , E )

INTEGER : : NA, NR, NC, DIM NA, DIM NH, DIM NE
REAL : : F2 , A(DIM NA) , H(DIM NH) , E (DIM NE)

END SUBROUTINE CSTRUCTFAC
END INTERFACE

[ . . . ]

DO I I = 1 , NR, NR 2
IND H = (DIM2 H ∗ ( I I − 1) ) + 1
IND E = ( DIM2 E ∗ ( I I − 1) ) + 1
CALL CSTRUCTFAC(NA, NR 2 , MAXATOMS, F2 , DIM NA, A, &

DIM NH/ TASKS , H( IND H : IND H + (DIM NH/ TASKS) − 1) ,&
DIM NE / TASKS , E ( IND E : IND E + (DIM NE / TASKS) − 1) )

END DO

[ . . . ]



Listing 10: Julia Snippet
#pragma omp t a r g e t d e v i c e ( o p e n c l ) \

ndrange ( 2 , j c . window size [ 0 ] / 4 , j c . window size [ 1 ] , 1 6 , 1 ) copy deps
#pragma omp t a s k o u t ( f r a m e b u f f e r [ 0 ; j c . window size [ 0 ] ∗ j c . window size [ 1 ] ] )

k e r n e l void c o m p u t e j u l i a ( f l o a t muP0 , f l o a t muP1 , f l o a t muP2 , f l o a t muP3 ,
g l o b a l u i n t 3 2 t ∗ f r a m e b u f f e r , s t r u c t j u l i a c o n t e x t j c ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++) {
getCurMu ( currMu , morphTimer ) ;
morphTimer += 0 . 0 5 f ;

c o m p u t e j u l i a ( currMu [ 0 ] , currMu [ 1 ] , currMu [ 2 ] , currMu [ 3 ] ,
f r a m e b u f f e r [OTHER FRAME( d i s p l a y f r a m e ) ] , j c ) ;

/∗ A l t e r t h e morphing m a t r i x ∗ /
i f ( morphTimer >= 1 . 0 f ) {

[ . . . ]
}
d i s p l a y f r a m e = OTHER FRAME( d i s p l a y f r a m e ) ;

}

Listing 11: NBody MPI

P a r t i c l e b r o a d c a s t a r g u m e n t s ( ) ;
P a r t i c l e a r r a y i n i t i a l i z e ( p a r t i c l e a r r a y , p a r t i c l e s ) ;
f o r ( i n t i = 1 ; i <= t i m e s t e p s ; i ++) {

P a r t i c l e a r r a y c a l c u l a t e f o r c e s c u d a ( p a r t i c l e a r r a y , p a r t i c l e a r r a y 2 , p a r t i c l e s ,
p a r t p e r p r o c e s s , t i m e i n t e r v a l , f i r s t , l a s t ) ;

# pragma omp t a r g e t d e v i c e ( smp ) copy deps
# pragma omp t a s k o u t ( p a r t i c l e a r r a y [ 0 ; p a r t i c l e s ] ) i n ( p a r t i c l e a r r a y 2 [ f i r s t : l a s t ] )
MPI Al lga the r ( p a r t i c l e a r r a y , p a r t p e r p r o c e s s ∗8 , MPI FLOAT , p a r t i c l e a r r a y 2 ,

p a r t p e r p r o c e s s ∗8 , MPI FLOAT , MPI COMM WORLD) ;
} /∗ f o r t i m e s t e p ∗ /
#pragma omp t a s k w a i t

this is being alleviated with the proliferation of libraries that
provide optimized kernels for different hardware accelerators
and programming models such as OpenACC or OpenMP 4.0,
which can automatically transform sequentially written codes
and run them in parallel on hardware accelerators. Hence, in
this section we focus on the complexity of the host side of
the application to compare between the four different versions
of each application: the two native versions (one with CUDA
and one with OpenCL) and the two OmpSs versions (which
only differs in the name of the kernel called).

To compare the productivity of each version we have used
two metrics: the number of lines of code and the number of
API/pragma calls on the host side of the application. We have
not included the kernel code in the comparison because both
CUDA C and OpenCL C kernels have about the same number
of lines and are used verbatim on the OmpSs versions. On
Table I the first value of each cell is the number of code lines
and the second one is the number of calls to the native API
or pragmas. If we look at the number of code lines, we can
observe that OpenCL is the one that requires more lines of
code closely followed by CUDA. The OmpSs version is the

shorter one for all the benchmarks. However, the number of
lines of code is not really representative of the application
complexity because, on one hand most of the initialization
code from OpenCL and CUDA can be easily reused from
one application to another one but, on the other hand, the
complexity introduced by the need to manage explicitly data
transfers and synchronization can be far higher than what we
can expect from just an increase of one hundred lines of
code. The number of calls to the native API/pragmas better
shows the reduction in complexity that OmpSs offers. As
we can see, most applications only require three pragmas:
one of them annotates the inputs and outputs of the kernel,
another pragma provides the parameters to configure the kernel
with the ndrange clause, and one more pragma waits for the
completion of all the generated tasks. However the CUDA
and OpenCL versions require a larger number of calls to
their API to perform all the explicit synchronization and data
transfer. This quantitative analysis already points out that the
techniques presented in this paper have a positive impact on
the complexity of the application, but from a qualitatively
point of view, our approach is much more productive for two



TABLE I: Productivity Comparison in lines of code / API calls

Benchmark CUDA OpenCL OmpSs
NBody 800 / 7 922 / 26 798 / 3
Matmul 240 / 14 292 / 31 133 / 3
Julia 825 / 11 943 / 30 770 / 5
Krist 342 / 15 446 / 30 280 / 3
NBody (MPI) 1030 / 13 1089 / 26 975 / 3

reasons: the first one is that with OmpSs the programmer is
only required to have a local view of the program, i.e. the
programmer only needs to think about the specific inputs and
outputs of a kernel, not on how this kernel will interact with
the rest of the program on each invocation. The second one
is that the run-time system is able to transparently manage
any data transfer required and then schedule the kernels on
the available resource without any additional effort from the
programmer.

Performance: The main reason to use hardware acceler-
ators on HPC environments are their potential to increase
applications’ performance. Hence, any proposal to improve
programmability must also have competitive performance. In
this section, we compare the performance of the two native
versions of the benchmarks with the OmpSs counterparts.
Table II shows for the four versions the execution time of
each application in seconds. The performance of the OmpSs
versions is equal or better than the hand-tuned native versions.
In the Krist benchmark the OmpSs versions are noticeable
faster due to the high number of kernels spawned and their
fine grained nature, which benefit from data caching and kernel
prefetching. In general, the potential overhead of OmpSs task
management (creation, synchronization and scheduling) are
very small compared to the granularity of the CUDA C and
OpenCL C kernels. We expect that the productivity/perfor-
mance trade-off of OmpSs will increase with the complexity
of the applications and the heterogeneity of the hardware.

Scalability: In this section, we evaluate the scalability of the
four versions of the applications. Figures 1 and 2 shows the
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Fig. 1: Scalability comparison between five hand-coded
OpenCL benchmarks and OmpSs counterparts (data from
Table II used as a baseline)

TABLE II: Performance Comparison. Exec. time (seconds)

CUDA OpenCL
Benchmark Native OmpSs Native OmpSs

NBody 169.1 166.5 178.2 178.2
Matmul 50.8 51.0 70.6 52.2

Julia 186.5 185.2 73.4 73.1
Krist (C) 284.6 260.8 313.3 250.6

Krist (Fortran) N/A 217.5 N/A 258.32
NBody (MPI) 247.8 247.2 307.2 306.4

scalability of OpenCL and CUDA versions respectively. Each
figure shows the speedup of CUDA or OpenCL applications
running with one, two, four and eight GPUs. Each benchmark
version uses its own data of Table II as a baseline to calculate
the speedup. Notice that the MPI version of NBody has only
been evaluated with 2 GPUs per node (with a total of 32
nodes). Both figures show a similar scalability curve for all
the applications but the Matmul one, which scales better with
the CUDA versions (both native and OmpSs). As we can see,
the scalability of OmpSs versions are as good as hand-tuned
native versions or even better for some of the benchmarks.

As the number of in-node devices increases, the complexity
of the host side of the application will also increase. To
deal efficiently with issues such as kernel scheduling across
devices, kernel synchronization (with other kernels, host code
and/or in-fly data transfers), data locality (to avoid unnecessary
data transfers), etc, the host code must be extended in a non-
trivial way. Moreover, the scenario evaluated in this paper are
still quite homogeneous and relatively easy to exploit because
all eight accelerator devices are identical. If the heterogeneity
of nodes continues to increase it will be even harder to develop
and optimize by hand applications that should simultaneously
exploit several hardware devices with potentially different
performance and power characteristics (which probably will
also depend on the type of workload executed).
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benchmarks and OmpSs counterparts (data from Table II used
as a baseline)



VI. CONCLUSIONS AND FUTURE WORK

This paper shows how OmpSs, a programming model that
runs sequential applications in parallel following a data-flow
execution model, has been augmented with the ndrange clause
to exploit accelerators. With the use of a simple and concise
syntax, OmpSs can fully replace the host API of both CUDA
and OpenCL in a portable way. The productivity evalua-
tion shows how OmpSs clearly simplifies the development
of hardware accelerated applications, both quantitatively –
in number of code lines and API calls– and qualitatively –
relieving the programmer from a whole class of scheduling,
synchronization and data transfers issues that otherwise the
programmer must have in mind–. In terms of performance,
our evaluation shows that OmpSs successfully compares with
hand-tuned code directly using CUDA or OpenCL host APIs.
Moreover, our opinion is that the productivity and performance
advantages of OmpSs will even increase if the current trend of
heterogeneity continues. It is worth noting that the approach
presented in this paper is specially well suited to port large and
complex applications because it can be incrementally applied
and really simplifies a mixed use of OpenCL C and CUDA C
kernels on the same application.

As a future work, we are investigating how to augment
OmpSs with OpenACC or OpenMP 4.0 pragmas to automat-
ically generate accelerated code from sequential code, thus
simplifying the development of code that run on the accelerator
side. We are also considering run-time auto-tuning of kernel
parameters on different devices and automatic selection of the
best accelerator device given a specific criteria (performance,
performance/watt, etc) and workload. We are also working
to augment the approach presented in this paper to support
kernels written in High-Level Synthesis to exploit FPGAs
devices.
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