CellSs: a Programming Model for the Cell BE Architecture

Pieter Bellens, Josep M. Perez, Rosa M. Badia and Jesus Labarta

April 24, 2006

Abstract

In this work we present Cell superscalar (CellSs) which addresses the automatic exploitation of the
functional parallelism of a sequential program through the different processing elements of the Cell
BE architecture. The focus in on the simplicity and flexibility of the programming model. Based on
a simple annotation of the source code, a source to source compiler generates the necessary code and
a runtime library exploits the existing parallelism by building at runtime a task dependency graph.
The runtime takes care of the task scheduling and data handling between the different processors of
this heterogeneous architecture. Besides, a locality-aware task scheduling has been implemented to
reduce the overhead of data transfers. The approach has been implemented and tested with a set of
examples and the results obtained since now are promising.

1 Introduction and Motivation

The design of processors has reached a technological limitation in the recent years. Designing more
performance processors is every time more and more difficult, mainly due to power usage and heat
generation. Manufacturers are currently building chips with multiple processors [1]. Although in most
cases each of the processors in these multi-core chips are slower than its contemporary single-core,
overall they improve the performance and are more energy efficient. Examples of these chips are
several dual-core processors like the AMD Opteron or Atlon, the Intel Smithfield or Montecito, or the
IBM Power4 or Power5. More challenging architectures are for example the Cell processor designed
by IBM, Sony and Toshiba, with nine cores (and heterogeneous) or the Niagara with eight cores, each
of them being able to handle four threads.

With the appearance of these multi-core architectures, the developers are faced with the chal-
lenge of adapting their applications to be able to use threads that can make use of all the hardware
possibilities.

The first generation of the Cell Broadband Engine (BE)™ [2] includes a 64-bit multithreaded
PowerPC®) processor element (PPE) and eight synergistic processor elements (SPEs), connected by
an internal high-bandwidth Element Interconnect Bus (EIB). The PPE has two levels of on-chip cache
and also supports IBM’s VMX to accelerate multimedia applications by using VMX SIMD units.

However, the main computing power of the Cell BE is provided by the eight SPEs. The SPE is a
processor designed to accelerate media and streaming workloads. The local memory of the SPEs is not
coherent with the PPE main memory, and data transfers to and from the SPE local memories must be
explicitly managed by using a DMA engine. Most SPE instructions operate in a SIMD fashion on 128
bits representing, for example, two 64-bit double-precision floating-point numbers or long integers, or
four 32-bit single-precision floating-point numbers or integers, etc. The 128-bits operands are stored in
a 128-bit register file. The memory instructions also addresses 128-bit operands that must be aligned
at addresses multiple of 16 bytes. Data is transferred by DMA to the SPE local memory in units of
128 bytes, enabling up to 16 concurrent DMA requests of up to 16KB of data.

The Octopiler compiler [4] implements techniques for optimizing the execution of scalar code
in SIMD units, subword optimization and other techniques. For example, it implements Auto-
SIMDization, which is the process of extracting SIMD parallelism from scalar loops. This feature
generates vector instructions from scalar source code for the SPEs and VMX units of the PPE. It is
also able to overlap data transfers with computation, to allow the SPEs to process data that exceeds
the local memory capacity. To our knowledge, this is also the only approach presented that allows
a higher level programming model in a Cell BE based architecture. Besides the other lower level
optimizations, this compiler also enables the OpenMP programming model. This approach provides
the programmers with the abstraction of a single shared-memory address space. Using the OpenMP
directives, the programmers can specify regions of code that can be executed in parallel. From a single
body program, the compiler duplicates the necessary code and adds the required additional code to
manage the coordination of the parallelization and generates the corresponding binaries for the PPE
and SPE cores. The PPE uses asynchronous signals to inform each SPE that work is available or that
it should terminate. The SPEs use a mailbox to update the PPE on the status of their execution.
The compiler implements a software cache mechanism to allow reuse of temporary buffers in the local
memory, and therefore there is no need for DMA transfers for all accesses to shared memory. Other
features, like code partitioning has also being implemented, to allow applications that do not fit in
the local SPE memory.

Although the OpenMP model has been demonstrated to be powerful and valid and has a growing
community of users [3], we consider that other higher programming models must be offered to the
Cell BE architecture programming communities that enable to exploit the heterogeneous and parallel
characteristics of this architecture.

With this goal, in this paper we present the Cell Superscalar framework (CellSs), which is based
in a source to source compiler and a runtime library. The supported programming model allows
the programmers to write sequential applications and the framework is able to exploit the existing
concurrency and to use the different components of the Cell BE (PPE and SPEs) by means of a
automatic parallelization at execution time. The only requirement we place on the programmer
is that annotations (somehow similar to the OpenMP ones) are written before the declaration of
some of the functions used in the application. The similarity with the Octopiler approach is that
an annotation (or directive) before a piece of code indicates that this part of code will be executed
in the SPEs. Therefore, similar techniques are applied to separate this part of code from the main
code and generation of a manager program to be run in the SPEs that is able to call the annotated
code. However, an annotation before a function does not indicate that this is a parallel region. It just
indicates that it is a function that can be run in the SPE. To be able to exploit the existent parallelism,
the CellSs runtime builds a data dependency graph where each node represents an instance of an
annotated function and edges between nodes denote data dependencies. From this graph, the runtime
is able to schedule for execution independent nodes to different SPEs at the same time. Techniques
imported from the computer architecture area like the data dependency analysis, data renaming and
data locality exploitation are applied to increase the performance of the application.

We would like to emphasize that OpenMP explicitly specifies what is parallel and what is not,
while with CellSs what is specified are functions that are candidates to be run in parallel. The runtime
will determine, based on the data dependencies, which functions can be run in parallel with others and
which not. Therefore, CellSs provides programmers with a more flexible programming model with an
adaptive parallelism level depending on the application input data.

In this work we focus on offering tools that enable a flexible and high-level programming model for
the Cell BE, while we will rely on the Octopiler [4] or other that may appear for the code SIMDization
and other lower level code optimizations.

The structure of the paper is the following: section 2 describes an overview of the system, section 3
describes the source to source compiler of the CellSs framework and section 4 the features implemented

in the runtime library. Section 5 presents some experimental results and tracefiles of real executions.
Finally, section 6 concludes the paper.

2 General structure and architecture

The main objective of the environment described in this paper is to provide the users with an easy to
use programming methodology which at the same time is able to produce binaries that take benefit of
the Cell BE architecture. The predecessor of the work presented in this paper is the GRID superscalar
environment [5, 6]. In this work, a superscalar processor is compared to a computational Grid: the
processor functional units are Grid computer resources, the data that is stored in registers corresponds
to files in the Grid and the assembly instructions to large (in terms of CPU time) simulations or
calculations. In superscalar processors a sequential assembly code is automatically parallelized and
non-dependent instructions are concurrently executed in different functional units. GRID superscalar
is able to do a similar job with large sequential applications composed of coarse grain tasks, by
concurrently executing non-dependent application tasks in different computing resources in a Grid.
While the first generation of GRID superscalar was based on code generation and the only data
dependencies that were taken into account were the ones defined by those parameters that are files,
the version under development [8] is based on a source to source compiler, is able to tackle almost all
type of data dependencies and besides the exploitation of the concurrency in the remote resources in
a Grid, further parallelization is achieved in the local client through the use of threads.

Cell superscalar is based is this second version of GRID superscalar. The system is composed of
two key components: a source to source compiler and a runtime library.

Figure 1 shows the process flow that a user application will follow in order to be able to generate
an executable for the Cell BE. Given a sequential application in C language, with CellSs annotations
(section 3 describes the annotations syntax) the source to source compiler is used to generate two
different C files. The first file corresponds to the main program of the application, and should be
compiled with a PPE compiler to generate a PPE object. The second file corresponds to the code
that will be executed under request of the main program in the SPEs. This file must be compiled with
an SPE compiler to obtain a SPE object, that will be linked with the SPE libraries to obtain a SPE
executable. However, in order to be able to execute this program, it must be embedded in the PPE
binary executed in the PPE. For this reason, the PPE embedder is used to generate a PPE object,
which is then used with the other PPE objects and PPE libraries as inputs to the PPE linker, which
finally generates the Cell executable.

Besides the CellSs compiler, the rest of the process is the same that must be followed to generate
binaries for the Cell BE.

The main program binary is normally started from the command line and starts its execution in
the PPE. At the beginning of this program the activity of the SPEs is initiated by uploading the SPE
binary in the memory of each SPE used. These programs will remain idle until the main program
application starts spawning work to them. Whenever the main program runs into a piece of work that
can be spawned in an SPE (from here one, a task), a request to the runtime library is issued. The
runtime will create a node representing this task in a task graph, and will look for dependencies with
other tasks issued before, adding edges between them. If the current task is ready for execution (no
dependencies with other tasks exists) and there are SPEs available, the runtime will make a request
to an SPE to execute this task. The corresponding data transfers are done by the runtime using the
DMA engines. The call to the runtime is not blocking and therefore, if the task is not ready or all the
SPEs are busy, the system will continue with the execution of the main program.

It is important to emphasize that all this (task submission, data dependence analysis, data transfer)
is transparent to the user code, which is basically a sequential application with user annotations
that indicates which parts of the code will be run in the SPE. The system can dynamically change

llib_css-spe.so

{
SPE Compiler M’ SPE Linker
SPE Embedder

PPE Compiler app_ppe.o
PPE
Object
{lp-ce=ppe;20 » PPE Linker

Cell
executable

Figure 1: Steps to generate a Cell executable

app_spe.c

CSS

compiler

app_ppe.c

the number of SPEs used by the application, taking into account the maximum concurrency of the
application at each stage of the same.

3 Compiler

The current version of the CellSs environment is based on source to source C compiler that is able to
process user annotations in the code. What is required from the user is to indicate those parts of the
code that are to be executed in the SPEs. Since the PPE is slower than the SPEs, the candidates to
be annotated are the CPU consuming parts of the application.

The current version of the source to source compiler supports the following features:

1. Provide the ability of specifying that a function is a task to be executed in the SPEs.
2. Provide the ability of specifying function parameter directions.
3. Provide the ability of specifying parameters that are 1-D arrays and their lengths.

What is to say, the compiler supports the annotation of parts of code encapsulated in a function
(or procedure), that have scalar parameters or 1-D arrays. The user must indicate the direction
of the parameters (input, output or input/output) in order to allow the runtime to find the data
dependencies.

Figure 2 shows an example of code with annotations. Let’s assume array_op is a computation
intensive function in a user application. The annotation is indicating that this function can be executed
in the SPEs and the direction of the parameters. The function has four input parameters, namely: a,
b, index_i and index_j; and an output parameter, c. The ({ }) after the parameter names (a, b and
c) indicate that those parameters are arrays. In this example, the user is not providing the size of the
input or output arrays since it is already specified in the function interface. An equivalent annotation,

#pragma css task input(a{}, b{}, index i, index_j) output(c{})
void array op(float a[N], float b[N], float c[N], int index_i, int index_j);
main(){

array.op(A, B, C, i, j);

Figure 2: Example of annotated code in CellSs

from the compiler point of view is shown in Figure 3, where the size of the arrays is specified. As it
can be seen, the annotation of the code is very simple.

From the annotated source code, the CellSs compiler is able to generate two different sets of files:
the main program of the application to be executed in the PPE and the tasks code to be executed in
the SPEs. In the main program files, the compiler inserts the following code:

e Calls to CellSs runtime initializing and finalizing functions.

e Calls for registering the annotated functions. This creates a table of functions that can be later
indexed by the SPE generated code.

e Substitutes de original calls to annotated functions by calls to the Execute function from the
CellSs runtime

Besides, the original code of the annotated tasks can be eliminated, since it is not going to be executed
in the PPE and therefore is not necessary in this binary. Figure 4 shows an example of generated code
for the PPE for example of figure 3.

The compiler generates an adapter for each of the annotated tasks. These adapters can then be
called (under request of the PPE program) from the SPE main program (tasks program), which is
hard-coded in the CellSs SPE runtime library. Figure 5 shows an example of the generated code for
the SPEs for the example of Figure 3.

The current implementation of this compiler is based on the Mercurium compiler [7]. This compiler
was originally designed for OpenMP but since its infrastructure is quite general it has been reasonable
easy to port it to enable Cell superscalar.

4 Runtime

As it has been mentioned before, CellSs environment shares most of the GRID superscalar next
generation version infrastructure. Besides the compiler, the other important piece which is shared is

#pragma css task input(a{N}, b{N}, index_i, index_j) output(c{N})
void array op(float *a, float *b, float *c, int index_ i, int index_j);
main() {

array_op(A, B, C, i, j);

Figure 3: Another example of annotated code in CellSs

main(){

CellSs RegisterLocalFunction ("array_op");

Execute ("array_op", 5, IN.DIR, ARRAY.T, 1, A, N, FLOAT.T,
IN.DIR, ARRAY.T, 1, B, N, FLOAT.T, OUT.DIR, ARRAY.T, 1, C, N, FLOAT.T,
IN.DIR, INT.T, O, i, IN.DIR, INT.T, 0, j);

Figure 4: Example of generated code for the PPE

void css_array_op_adapter (int *params, char *data_buffer)
{
array_op-adapter(data_buffer[params[0]], data_buffer[params[2]],
data buffer[params[4]], data buffer[params[6]], data buffer[params[8]]);
}

Figure 5: Example of generated code for the SPE

the runtime library. Although a rough overview of what the runtime is able to do will be described in
this section, the reader is referred to [8] for a deeper explanation. The most important change in the
original user code that the CellSs compiler inserts are the calls to the Execute function whenever a
call to an annotated function appears.

At runtime, these calls to the Execute function will be the responsible for the intended behavior
of the application in the Cell BE processor. At each call to Ezecute, the runtime will do the following
actions:

e Addition of a node in a task graph that represents the called task.

e Data dependency analysis of the new task with other previously called tasks. The data depen-
dency analysis is based on the assumption that two parameters are the same if they have the
same address. The system looks for RaW, WaR and WaW data dependencies .

e Parameters renaming: similarly to register renaming, a technique from the superscalar processor
area, we do renaming of the output and input/output parameters. For every function call that
has a parameter that will be written, instead of writing to the original parameter location, a
new memory location will be used, that is, a new instance of that parameter will be created and
it will replace the original one, becoming a renaming of the original parameter location. This
allows to execute that function call independently from any previous function call that would
write or read that parameter. This technique allows to effectively remove all WaW and WaR
dependencies by using additional storage, greatly simplifying the dependency graph and thus
improving the chances to extract more parallelism.

e Additionally, under certain conditions, the task maybe submitted for execution. This process is
described in the next paragraph.

During the execution of the application the runtime maintain a list of ready tasks. A task is labeled
as ready whenever no data dependencies exist between this task and the others or whenever all the
data dependencies between this task and the others have been solved (i.e., the predecessor tasks have

'RaW, WaR and WaW stand for Read after Write, Write after Read, and Write after Write respectively [12]

finished their execution). The task dependency graph and the ready list are updated each time a new
task appears (when calling the Execute function) and each time a task finish. When a task finishes,
the runtime is notified (section 4.1 specifies how this is implemented for the Cell processor case) and
the task graph will be checked to establish which data dependencies have been satisfied and add those
tasks that now have all data dependencies solved to the ready list.

Given a list of ready tasks and a list of available resources, the runtime will choose the best
matching between tasks and resources and will submit the tasks for execution. By task submission it
is meant to perform all the necessary actions in order to execute that task: parameters transfer and
request for task execution. Section 4.1 describes how this is performed for the Cell BE processor case.
This resource selection is tailored to exploit the data locality between the tasks. In this sense, the
runtime will try to assign tasks that have a data dependency to the same resource. Then, the data
which is shared between both tasks is kept in the resource, reducing the application time devoted to
data transfer. Section 4.2 describes how this is implemented for the Cell BE processor case.

Finally, the runtime has been provided with a tracing capability. When running an application, a
post-mortem tracefile can be optionally generated. This tracefile can be afterwords analyzed with the
performance analysis toolset Paraver [10]. Section 4.3 describes this feature.

4.1 Middleware for Cell

CellSs applications are composed of two type of binaries: the main program, which will be run in the
PPE and the tasks program, which will run in the SPE. These binaries are obtained by compilation of
the files generated by the CellSs compiler with the CellSs runtime libraries as described in section 2.

When starting the main program in the PPE, the tasks program will be launched in each of SPEs
used for this execution. The tasks programs will wait for requests from the main program.

To be able to execute the annotated functions is the slave SPEs, the runtime should be able to:
prepare all the necessary data to be transferred to the SPEs, request the SPE to start a task and,
synchronize with the SPEs to know when a task finishes.

When the scheduling policy selects a task from the ready list and an SPE as resource for executing
this task it builds a data structure, the task control buffer, which stores all the information required
by the SPE to locate the necessary data for the task. The task control buffer contains information
such as: task type identifier, location of each of the parameters and control information.

The task type identifier is just an identifier that allows the SPE to know which is the task between
all the annotated that have to be executed. Regarding the input parameters, it may happen that
some of them are already located in the local memory of the SPE (as a result of a previous execution)
or it may be that they are in the main memory and therefore should be DMAed in before executing
the task. Regarding the output parameters, it may be that some of them must be kept in the local
memory after task execution or it may be that some of them must be copied back to the main memory
when the task finishes (this operation will be done by DMA also). All this information is stored in
the fields of the task control buffer.

The request from the main program to execute a task in a given SPE is done through a mailbox
structure. One entry of this mailbox exists for each of the SPEs. When there is a task ready for
execution for a given SPE, the main program places in the corresponding entry the request, the
address of the task control buffer and the size of this buffer.

The behavior of the tasks program run in the SPE, is the following: if the tasks program is idle,
it polls its corresponding entry of the mailbox until a task request is detected. Then, it DMASs in the
task control buffer. From this buffer is able to understand where it is all the data that is required for
the requested task, even if it is in the main memory and should be DMAed in to the local memory,
or even it is already in the local memory. Once all the necessary input data has been DMAed in, the
task is executed in the SPE by calling the annotated task through the generated adapter. When the

task is finished, the tasks program DMAs out some of the output data, according to the task control
buffer and keeps in local memory the rest of data.

Besides, the task control buffer may contain instructions to compact the data located in the local
memory. Since some of the data located in the local memory is kept from task to task and other is
not, the local memory can suffer from fragmentation. The CellSs PPE runtime library keeps a map
of the SPEs local memories and implements a compaction policy to reduce the fragmentation level.

Regarding the requirement in the SPEs of data alignment, the tasks program takes care of this by
aligning all data in positions multiple of 16 bytes.

Regarding the synchronization between the PPE and the SPE, two different options have been
implemented and tested. The first implementation is based on a MUTEX mechanism provided by
the IBM CBE SDK [11]. However, when we tested this version, it turn out that the main program
was missing some of the SPE callbacks to indicate that the task has finished. This was considered a
bug of the IBM CBE SDK and a bug was reported. However, in the meanwhile we need a working
version. Then, a second synchronization mechanism was implemented using event signaling. The tasks
program communicate in two different cases with the main program: when all data required for a task
has been DMAed in and when a task execution is finished (and all output data has been DMAed out).
The type of event is written in a position of the mailbox and then the tasks program signals the main
program using an intrinsic (spu-hcnpeq).

The implementation described in this section is based on the SPE Threads provided with the Cell
BE system libraries.

4.2 Locality exploitation

As described above, when executing the main program in the PPE, the CellSs runtime builds a task
data dependency directed graph where each node is an instance of the annotated functions. If two
tasks are linked with an edge in this graph it means that at least one result of the source node is used
as input by the sink node.

The objective is to reduce the amount of data that is transferred between the PPE and the SPEs
and between the SPEs. The current CellSs implementation is able to keep the results of a computation
in the SPE instead of transferring them back to the main memory. Then, if the task or tasks that need
this result are scheduled in the same SPE, no data transfers are required. A locality aware scheduling
policy has been implemented in the CellSs PPE library to tackle this problem.

At given moments of the execution (scheduling step), the policy considers the subgraph composed
of the tasks in the ready list and the subsets of nodes in the task dependency graph which are
connected to the ready nodes up to a given depth. This subgraph is then partitioned in as many
groups as available SPEs, guided by the parental relations of the nodes. In this sense, the policy will
try to group source with sink nodes, trying to reduce the number of transfers but also not reducing
the concurrency of the execution. Each partition is then initially assigned to one SPE. The tasks
in a partition are sent for execution independently (not as a whole). The static scheduling can be
dynamically changed to solve workload unbalance, at a cost of a data transfer in some cases. This
will happen when it is detected that a SPE is idle and there are no tasks left in its corresponding
partition, while other SPEs has ready tasks waiting for execution in their partition. Some of the
tasks will then be reassigned dynamically to other partitions. This algorithm resembles the dominant
sequence clustering algorithm (DSC) [9], but the algorithm we have implement is more dynamic and
adds work stealing.

Figure 6 shows an example of behavior. At a given point in the execution of an application, a task
graph has been generated by the CellSs runtime (figure 6.a). Each node in the graph represent a call
to a annotated function in the original code, and the edges are added by the CellSs runtime whenever a
data dependency exist between them. The number indicated in the node reflects the creation order of
the graph (for example, the first annotated function that was called by the application is represented

by node 1 and the node labeled with a 5 represents the fifth annotated function that was called). The
tasks that do not have data dependencies with other tasks are included in the ready list.

At this scheduling step, the subgraph considered for partition consist of: tasks in the ready list, and
successors of these tasks until depth 2 (i.e., direct successors, and direct successors of its successors).
Consider that we have 4 SPEs available for the execution of this application. The subgraph is then
partitioned in 4, and one partition is assigned to each SPE. A possible partition is shown in figure 6.b).
Then, the scheduler will select one task from each partition to be spawned in each SPE. For some
partitions, the selection is obvious, as for the speO partition, where only task 1 is in the ready list. In
other cases, the decision will be based on the length of the longest path from the node to the leaves of
the task graph (i.e., for partition spel task 2 will be selected). Finally, in other cases, as for partition
spe3 the scheduling will just pick the first node in alphabetical order (task 23). Each time a task
finishes, the CellSs runtime will be notified. After identifying the SPE that is idle, the scheduler will
select another ready task from the partition and spawn it for execution in the SPE. The CellSs runtime
will control the required data transfers in each case. For example, for this partition, when task 1 and
task 2 have finished, task 3 will be spawned for execution. The task control buffer will indicate that
the data obtained by task 1 is already in the SPEQ local memory but the data obtained by task 2 will
transferred 2.

Another possible partition is the one described in figure 6.c). In terms of data transfers, figure 6.c)
is better since the data transfer of the result generated by task 2 can be kept in the local memory
of SPEO, and therefore whenever task 3 is executed, no data transfers will be required. However, in
terms of execution time may be inferior, since task 1 and task 2 cannot be executed at the same time
in a single SPE and therefore these two tasks will be serialized.

Figure 6.d describes the dynamic behavior of the scheduling policy. The nodes in light blue (darker
color when printed in b&w), represent tasks that are currently being executed in the corresponding
SPE. The nodes that have disappeared from the graph represent tasks that have finished their execu-
tion. As it can be observed, partition spe3 is now empty, and therefore an SPE will be idle. In this
situation the policy will try to balance the workload by stealing ready tasks from other partitions. In
this case, task 4 from partition spel is ready for execution and waiting. The scheduling policy selects
this node and move it to partition spe3, and task 4 is started immediately (see figure 6.e). In some
cases this may require some data transfers from a local memory of an SPE to another. The policy
will take these transfers into account trying to minimize them.

4.3 Tracing

A tracing mechanism has been implemented in the CellSs runtime which generates Paraver [10] con-
forming post-mortem tracefiles of the applications. A Paraver tracefile is a collection of records or-
dered by time where information about the events and states that the application has passed through
is stored. These traces can then analyzed with the Paraver graphical user interface which allows per-
formance analysis at different levels (i.e., task level, thread level), filtering and composing functions
that allow different views of the application and a set of modules to calculate various statistics.

Although Paraver has its own tracing packages for MPI, OpenMP and other programming models,
in this case a Tracing Component has been embedded in the CellSs runtime. The Tracing Compo-
nent records events as they are signaled throughout the library. For example, it records when the
main program enters or exits any function of the CellSs API (as for example CellSs_On, CellSs_Off,
CellSs_RegisterLocalFunction), it records when an annotated function is called in the main program
(and therefore a node is added to the graph), when a task is started or finished, etc.

2The kernel version available at BSC when writing this version of the paper does not support direct DMA transfers
between SPEs. For this reason, a data transfer from SPE1 to main memory and a data transfer from main memory to
SPEO will be required implementation for this case.

Ready list

- —_— = = = — — — £ — —

CEEXD

- = — = = = = spe0 spel spe2 spe3

% @ bgraph considered ?‘ @ @ TE
¥ ¥ /e

in this scheduling step
P
@’/ @ subgraph not considered {
in this scheduling step @

spe0 spel spe2 spe3 spel spel spe2 spe3

%?/@@ %/@@\\@?{

¥/ e vy I

© ©)

spel spel spe2 spe3

e

)

Figure 6: Locality aware task scheduling. a) Subgraph selection; b) Initial task assignment to SPEs;
c¢) Re-assignment of task to SPE; d) Final assignment.

10

The traces obtained will allow to analyze the behavior of the CellSs runtime and of the application
in general. This tracing capability can be enabled or disabled by the user.

5 Examples and results

Since now we have measured and analyzed the behavior of three examples: a block matrix multipli-
cation (matmul), an exact implementation of the travel salesman problem (TSP),and a block matrix
Cholesky factorization (cholesky),

The examples generate different levels of difficulty for the CellSs runtime scheduler: while the TSP
generates a embarrassingly parallel graph (all tasks instances are data independent between them) and
the matrix multiply generates a relatively easy to schedule graph, the Cholesky factorization generates
a much more connected data dependence graph which is more challenging for the CellSs scheduler.

5.1 Performance analysis

The first tests were performed with the matrix multiply example. As it has been mentioned before,
in this example the elements of the matrixes are blocks, i.e, each element of the matrixes is itself a
smaller matrix. In this case, the blocks of data we used are blocks of 64 x 64 double precision floats,
while the matrixes are of 16 x 16 blocks. This schema generates 4096 tasks, each of them performing
a 64 x 64 matrix multiplication. This 4096 tasks are organized in groups of 16 dependent tasks, where
each tasks reads the result of the previous one. Thus we expected that this organization was an easy
to schedule graph for the locality aware task scheduler.

By using the tracing mechanism we were able to tune the initial results. For example, by means of
the analysis of the trace files, we were able to observe that while the scheduler was working as expected
the synchronization mechanism was reducing the performance of the application. Each time an SPE
signals an event to the PPE resulted in a high time penalty. For the moment we have been able to
reduce this overhead by reducing the number of signals an SPE sends to the PPE to the minimum.
However, we foresee further tuning in the synchronization mechanism to increase the performance.

Figure 7 shows a sample plot of the visualization with Paraver of a tracefile. The x-axis represents
the timeline and each line in the y-axis represent a thread. The PPE executes two threads: the Master
thread and the Helper thread. While the Master thread executes the main program application and
the runtime features, the Helper thread is in charge of hearing to the SPE threads. Each SPE executes
a single thread (SPU thread i). In the plot, the dark blue indicates that the thread is busy and the
light blue that the thread is idle. This plot is from an execution where the SPEs where signaling two
events per task to the PPE. It can be easily observed that the threads run in the PPE are much more
busy than the threads run in the SPEs. This situation improved a lot when we reduced the number
of signals generated by the SPEs. This is just a simple example of how the trace file generation and
analysis is worthwhile, at least for development purposes.

The final results for the matrix multiply example are shown in figure 8, where we can see that this
examples scales almost perfectly. The figure presents the performance results obtained when running
with 1, 2, 4 and 8 SPEs scaled to the case when 1 SPE is used.

5.2 Execution results

The TSP example performs an exhaustive search to find the optimum solution to this traditional
problem. The scheme of the implemented algorithm is recursive, but the recursion is composed of
two parts: the part that it is execution in the PPE and the part that is executed in the SPE. The
level of recursion at which this decomposition is performed determines the number and size of tasks
executed in the SPEs: at earlier levels a small number of coarse grain tasks are generated, and at later
levels a larger number of fine grain tasks are obtained. The algorithm passes as arguments to the SPE

11

css_trace @@ gss-trace-21076. prv

| FrRRERFRRFRRRRRA ERR AR FRR FRRR FiR F R S R E R FRF S FRRARARIR R PR R F A ARE P FRIFR R R R R R R R FR AR
Ll 1 1 1 1

1
1 1 1 1 1
F FPRR FF F F FF PFRF PR P F FF FPPF PR F F FR FRFF PR R P FFFFFF PR PR PR FFPFP PR F P FF FFFF FR [P

Figure 7: Sample generated tracefile

tasks, a vector with the partial path solution built until the moment. As expected, since all tasks are
independent between them, the execution scale perfectly with the number of processors (see figure 8).

The Cholesky factorization is implemented as the matrix multiply with matrixes of blocks. The
block-size is again 64 x 64 double precision floats, and the matrixes are of 11 x 11 blocks, resulting in
705 tasks. The challenge of the Cholesky example is duo-fold: first, these 705 tasks compose a highly
connected dependency graph, and second, there are up to six different tasks of different grain-level.
We consider that the results obtained for this example (figure 8) are reasonable taking into account
the above mentioned reasons.

6 Conclusions

This paper presents CellSs, an alternative to traditional parallel programming models. The objective
is to be able to offer a simple and flexible programming model for parallel and heterogeneous archi-
tectures. Following CellSs paradigm, input applications can be written as sequential programs. This
paradigm is currently customized for the Cell BE architecture. The runtime builds a task dependency
graph of the calls to functions that are annotated in the user code and schedules these calls in the
SPEs, handling all data transfers from and to the SPEs. Besides, a locality-aware scheduling algorithm
has been implemented to reduces the amount of data that is transferred to and from the SPEs.

The initial results are promising but there is a lot of work left, as for example: new annotations
to be taken into account by the source to source compiler, improvement in the scheduling and data
handling, and improvement of the synchronization mechanism between the PPE and the SPEs.

[=%

3

=

a4 & Matmul
& / VTSP

s Ay Cholesky
z FiN
1

Figure 8: Results obtained for the evaluated examples. Speed up is measured against the execution
with 1 SPE

12

References

[1]
2]

[3]

D. Geer, Chip Makers Turn to Multicore Processors, Computer, May 2005.

D. Pham et al., The Design and Implementation of a First-Generation Cell Processor, in Pro-
ceedings of the 2005 IEEE International Solid-State Circuits Conference (ISSCC), 2005.

The Community of OpenMP Users, Researchers, Tool Developers and Provider website,
http://www.compunity.org/

A.E. Eichenberger et al., Using Advanced Compiler Technology to exploit the performance of
the Cell Broadband Engine™ Architecture, IBM System Journal, Vol 45, Num 1, 2006.

Rosa M. Badia, Jests Labarta, Raiil Sirvent, Josep M. Pérez, José M. Cela, and Rogeli Grima,
Programming Grid Applications with GRID superscalar, Journal of Grid Computing, Vol. 1, No.
2, 151-170, June 2003.

GRID superscalar homepage, http://www.bsc.es/grid/grid_superscalar/

M. Gonzalez, J. Balart, A. Duran, X. Martorell, and E. Ayguad, Nanos Mercurium: a Research
Compiler for OpenMP. In Proceedings of the European Workshop on OpenMP 2004. October
2004.

Josep M. Perez, Rosa M. Badia and Jesus Labarta, Scalar-aware GRID superscalar, DAC tech-
nical report UPC-DAC-RR-CAP-2006-12, www.ac.upc.edu, 2006.

T. Yang and A. Gerasoulis, A Fast Static Scheduling Algorithm for DAGs on an unbounded
number of processors, in Proceedings of the 1991 ACM/IEEE conference on Supercomputing,
1991.

Jesus Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, Luis Gregoris, DiP : A Parallel Program
Development Environment, 2nd International EuroPar Conference (EuroPar 96), Lyon (France),
August 1996.

PowerPC Hosted Environment for the Cell Broadband Engine Version 1.0.1,
http://www.bsc.es/projects/deepcomputing/linuxoncell /cellsimulator /ppe-cellsimulator-
sdk1.0.1.html

J. L. Hennessy, D. A. Patterson, D. Goldberg, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann, 2002.

13

