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Los momentos que me habéis ofrecido son, realmente, inolvidables.





Contents

List of Figures xi

List of Algorithms xiii

List of Tables xv

Preface 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Goals and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Concepts and Survey of Related Work 5

1 Virtual Currency management and payment protocols 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Currency Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Closed Currency Market . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Open Currency Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Multiplicity of currencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Currency representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Account balance based . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Token based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Currency storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Remote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



CONTENTS

1.6 Transaction Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.1 Bank intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.2 Ordering in transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.3 Transaction amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.1 Authenticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.2 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.3 Counterfeiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Survey and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8.1 PeerMint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8.2 Karma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8.3 PPay and CPay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8.4 GridBank and Tycoon Bank . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8.5 Hash Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Distributed Hash Tables 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 DHTs structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Overlay network topoly . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Routing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Replication schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Replication as a technique to achieve fault-tolerance . . . . . . . . . . . 32

2.3.2 Replication mechanisms in DHTs . . . . . . . . . . . . . . . . . . . . . 33

2.4 Survey and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Pastry and Tapestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Distributed k-ary System . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Consistency in DHTs 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Consistency mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Key Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Data Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Survey and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Atomic Ring Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



CONTENTS

3.3.2 Token based root authorization . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Etna: consensus over DHT . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Atlas P2P Architecture (APPA) . . . . . . . . . . . . . . . . . . . . . . 48

4 Mutual Exclusion in DHTs 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Mutual Exclusion properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Classification of Distributed Mutual Exclusion algorithms . . . . . . . . . . . . . 52

4.4 Survey and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Sigma algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 End-to-End and Non End-to-End protocols . . . . . . . . . . . . . . . . 54

II The Currency Management System 57

5 General Overview 59

6 System requirements analysis and specification 61

6.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1 User requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.2 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.3 Infrastructure requirements . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 System specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 API Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 System Architecture 75

7.1 Grid4All Market Place Architecture . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Payment Module logical view . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Currency Management System Architecture . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Deployment View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.2 Component View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Design and Implementation 83

vii



CONTENTS

8.1 Key Based Routing Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1.1 Key Based Routing API . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Mutable Consistent Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.1 Mutable Consistent DHT API . . . . . . . . . . . . . . . . . . . . . . . 87

8.2.2 Mutable Identifier Space . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.3 Consistency Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.4 Maintaining Consistency when dealing with dynamism . . . . . . . . . . 94

8.3 Transactional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.1 Transactional Layer API . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.2 Mutual Exclusion Mechanism . . . . . . . . . . . . . . . . . . . . . . . 100

8.3.3 Transactional Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4 Banking Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.4.1 Transaction Commands Component . . . . . . . . . . . . . . . . . . . . 110

8.4.2 Account Management Component . . . . . . . . . . . . . . . . . . . . . 111

8.4.3 Security Management Component . . . . . . . . . . . . . . . . . . . . . 112

8.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5.1 Message Dispatching Component . . . . . . . . . . . . . . . . . . . . . 116

8.5.2 Synchronous Communications over asynchronous primitives . . . . . . . 121

9 System Evaluation and Characterization 123

9.1 Execution environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.1 Transactional Mechanism Evaluation . . . . . . . . . . . . . . . . . . . 124

9.2.2 Consistency Mechanism Evaluation . . . . . . . . . . . . . . . . . . . . 128

9.3 System comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10 Project Plan and Economic Evaluation 133

11 Conclusions and Future Work 137

III Appendixes 141

A Conventions for the notation of algorithms 143

B User Guide 145

viii



CONTENTS

B.1 Basic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.1 Localhost Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.2 Distributed Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.2.3 Playing with it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C Glossary 153

Bibliography 157

ix





List of Figures

1 Grid4All and Virtual Organizations overview . . . . . . . . . . . . . . . . . . . 3

1.1 Taxonomy on currency systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Peermint scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Karma scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Common API for Structured p2p overlay networks . . . . . . . . . . . . . . . . 29

2.2 Basic DHT structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Replication techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Replica placement: Successor list disadvantage . . . . . . . . . . . . . . . . . . 35

2.5 Replica placement: Symmetric replication approach . . . . . . . . . . . . . . . . 36

2.6 Replica placement: Symmetric replication disadvantage . . . . . . . . . . . . . . 37

2.7 Pastry: Plaxton-like routing system . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Distributed k-ary System: k-ary routing system . . . . . . . . . . . . . . . . . . 41

6.1 Actors in the CMS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Grid4All Market Place architecture . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Payment Module logical view . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Currency Management System deployment view . . . . . . . . . . . . . . . . . 79

7.4 Currency Management System architecture . . . . . . . . . . . . . . . . . . . . 80

8.1 Currency Management System layered view . . . . . . . . . . . . . . . . . . . . 84

8.2 KBR Component Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.3 Mutable Consistent Component Interface . . . . . . . . . . . . . . . . . . . . . 87

8.4 Two different approaches for identifier assignment . . . . . . . . . . . . . . . . . 90

8.5 Basic Mutable Layer Communication Protocol . . . . . . . . . . . . . . . . . . 95

8.6 Transactional Component Interface . . . . . . . . . . . . . . . . . . . . . . . . . 99

xi



LIST OF FIGURES

8.7 Transactional objects stored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.8 TransactionManager Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . 108

8.9 CMS Banking Layer Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.10 Account and Receipts Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . 112

8.11 Call to Command Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . 113

8.12 Transaction execution example . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.13 Transaction Transfer of Funds logic . . . . . . . . . . . . . . . . . . . . . . . . 115

8.14 Message Dispatcher Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . 117

8.15 Message Dispatcher Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . 118

8.16 Message Dispatcher Reconfiguration Sequence Diagram . . . . . . . . . . . . . 119

8.17 Message Dispatcher Serializer Sequence Diagram . . . . . . . . . . . . . . . . . 120

8.18 Synchronous Communication Class Diagram . . . . . . . . . . . . . . . . . . . 121

8.19 Synchronous Communication Sequence Diagram . . . . . . . . . . . . . . . . . 122

9.1 Response Time vs Requests rate Comparison . . . . . . . . . . . . . . . . . . . 126

9.2 Response Time vs Requests rate zoom Comparison . . . . . . . . . . . . . . . . 127

9.3 Throughput vs Requests Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4 Throughput vs Requests Rate Zoom . . . . . . . . . . . . . . . . . . . . . . . . 128

9.5 Probability of recovering stale data Comparison . . . . . . . . . . . . . . . . . . 129

9.6 Interval Recovery Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1 Task duration and costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.2 Project Planification Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1 Simple Web Interface of the Mutable Consistent DHT Layer . . . . . . . . . . . 149

xii



List of Algorithms

8.1 Create Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Update Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3 Query Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4 Interval Reconfiguration Mechanism to deal with node failures . . . . . . . . . . . 97

8.5 Lock Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.6 Unlock Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.7 Commit Object Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.8 General Transaction Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1 Algorithm Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiii





List of Tables

1.1 Comparison of Currency systems . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Comparison of Structured Overlay Networks . . . . . . . . . . . . . . . . . . . 42

3.1 Comparison of DHT Consistency mechanisms . . . . . . . . . . . . . . . . . . . 49

4.1 Comparison of Mutual Exclusion over DHTs . . . . . . . . . . . . . . . . . . . 56

6.1 Banking Service API Specification . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.1 Costs by roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1 Configuration properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.2 Mandatory properties for building the overlay . . . . . . . . . . . . . . . . . . . 150

xv





Preface

Introduction

The necessity of greater computational resources by current enterprise and scientific organizations

is increasing nowadays. This fact triggered what we currently know as The Grid. Foster et al.[1, 2]

firstly defined it as a system which coordinates resources that are not subject to centralized con-

trol using standard, open, general-purpose protocols and interfaces to deliver nontrivial qualities

of service to users. The general idea behind this definition is the creation of a decentralized sys-

tem within which different organizations could share their computational resources to acquire a

computational capacity impossible to achieve on their own.

One of the current main issues is the resource allocation problem amongst several users achieving

high utilization rate without compromising user satisfaction. One mechanism which is currently

gaining ground is the use of economic models in the context of resource allocation within the Grid,

basically, due to:

• being an incentive to organizations for sharing their resources.

• being an auto-regulation mechanism for using resources based on the demand and supply

law.

• being a mechanism to measure the importance (also called utility) of user’s executed jobs.

As long as it is necessary some kind of transfer of rights mechanism, this economic model arises

the issue of defining a series of protocols which enables the system to carry out the previously

mentioned transfer of rights or, more commonly, payments.

Within this context, the Grid4All [3] European project has been created with the main objective

of democratize the Grid to bring over it to little organizations and/or individuals without having to

individually invest and manage computing and IT resources.

1



Preface

For that purpose, a framework for the development of Grid applications is defined with the help of

which organization’s users access IT resources through a market when their own resources turn out

to be limited. This resource market is built upon the resources provided by different organizations

taking part of the Grid.

Context

Basically, the world envisaged by Grid4All is builded upon some organizations which desire to

share and consume resources to and from other organizations to fulfill their purposes (i.e increase

computing and storage capacity).

This way, each organization (called Virtual Organization and its acronym VO) integrates services

and resources accross distributed and dynamic organizations to allow service and resource sharing

when cooperating on the realization of joint goals.

If the VO has not enough resources to carry out its objectives due to resource scarcity, it asks

the market (See Figure 1) in order to allocate extra resources needed by the VO. Within this con-

text, Grid4All provides the Market Framework which is in charge of defining different resource

acquisition policies within the market itself.

So it is necessary to define mechanisms and protocols which enables the system to perform right

transfers (payments) in order to maintain the accounting of which resources have been used by

each VO and its associated price.

Goals and Scope

Once introduced the context upon which this project is stated, we define the main objectives as to:

Survey of different resource sharing accounting mechanisms : or, in other words, payments.

The objective is to survey current existing solutions related with carrying out payments and

currency management used for resource sharing and resource right exchange mechanisms.

Define specific Grid4All requirements : specify and select concret necessities in the context of

currency management within Grid4All.

Design and implement a prototype : once specified the requirements, desing and implement a

prototype of the basic components based upon those requirements in order to validate the

system.

2
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Figure 1: Grid4All and Virtual Organizations simple scheme. This figure shows how a user within a VO uses
the VO available resources. Only if they are not enough to fulfill user requirements, the VO management
framework will acquire more resources through the market.

Evaluate and characterize the system : validate the correct behaviour of our prototype as well

as characterize its performance.

Project Overview

The starting point within Grid4All was the creation of a Virtual Currency which would enable the

system to perform payments between clients and providers without having to rely on an external

payment component outside the Grid4All infrastructure such as credit entities (credit cards through

real banks) or PayPal. Both cases imposes a tax every time a payment is carried out.

As we will see through the rest of this document (and more concretely on Part II), one of the

mandatory components for carrying out such transactions is a banking service which manages

different user accounts within Grid4All.

This banking service should be reliable, fault-tolerant and scalable in the number of transactions

it must support. For this reason, we have decided to implement it on top of a Distributed Hash

Table (a sort of distributed storage based upon a structured peer-to-peer overlay network) which

enables the system to take profit of several desirable properties for a distributed system such as its

fault-tolerance, its inherent scalability as well as its self-management.

Nevertheless, operations such as transfer credit from one account to another one involve other

requirements such as transactional semantics (ACID) used by current databases. For example,
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transfer credits from one account to another implies modifying both accounts or, in case of failure,

none at all.

This way, part of this project will deal with providing stronger guarantees when dealing with

replicated data as well as providing transactional semantics by enhancing current DHTs imple-

mentations taking into account inherent dynamism within p2p networks.

To sum up, the final solution proposed by this project will be to develop a reliable distributed

banking service prototype for the Grid.

Document organization

This document is organized as follows:

Part I: Concepts and Survey of Related Work. We begin by defining and surveying several con-

cepts of currency related issues. For this reason, we provide a taxonomy of payment systems

and provide a state of the art description on this area. Thereafter, we define DHTs related

information such as their structure or their data management related issues (consistency and

concurrency). Although this work was reported after the requirements of our system were

defined, we have decided to introduce it within this part for the sake of clarity and organiza-

tion.

Part II: The Currency Management System. Within this part we define the requirements and

architecture of our system. Moreover, we provide a detailed view on the design and im-

plementation decisions taken. Finally, we evaluate and characterize the performance of

our decisions in order to learn from our prototype for future iterations. We finally provide

project management issues such as the economical evaluation and project plan.

Part III: Appendixes. To facilitate reading this document, we provide a short glossary and con-

ventions for the notation of algorithms used through Part II. We also provide a short guide

to install and use our system in case the reader wishes to test it.
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Part I

Concepts and Survey of Related Work

Throughout this part, we will introduce several concepts related to our work

which will help the reader to follow the decisions taken and made a clear idea

of the context this project is part of. Thus, Chapter 1 presents a taxonomy and

a survey of different currency systems existing to date. The rest of chapters are

DHT related issues. We begin with Chapter 2 by surveying and comparing dif-

ferent DHT solutions as well as the basic mechanisms on which they rely. We

continue in Chapter 3 presenting different mechanisms to provide data consis-

tency over DHTs and, finally, Chapter 4 introduces protocols to ensure mutual

exclusion using DHTs as a substrate.





Chapter 1

Virtual Currency management and
payment protocols

1.1 Introduction

A currency, as defined by the Wikipedia is a unit of exchange, facilitating the transfer of goods

and services. It is a form of money, where money is defined as a medium of exchange (rather than

a store of value). Therefore one function of currencies is facilitation and regulation since each

country or region with a currency has some institutions (monetary authority) exerting control over

the amount of circulating currency (the central bank or the ministry of finance).

Also from Wikipedia: The origin of currency is the creation of a circulating medium of exchange

based on a unit of account which quickly becomes a store of value. Therefore currency can serve as

an element to assign value or generic capacity to consumers, to facilitate and delegate actions/uses,

to account for usage of services and resources, and to support the regulation of a system by en-

abling or limiting the generic capacity of consumers in respect to the capacity of providers and

also limiting the storage of value.

The virtual currency has arisen as a necessity to apply economic policies in the scope of the

regulation in distributed systems. Every system based on economic models has defined some type

of currency in an explicit or implicit way. Currency definition is based in the concrete necessities

of the system and therefore there is a great variety of these mechanisms.

In these systems, to guarantee the equitable distribution of the resources available, some type of

bartering is made. For example, SHARP [4, 5] implements a policy of interchange of rights to use

certain resources during a certain period of time. The problem with bartering is the complexity at
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the time of materializing the exchange, due to the difficulty of matching different supplies. There

is a tendency to define a generic entity as the base for the exchange. This allows more flexible

goods representation and to make the economy most dynamic, such as it has happened with the

real commerce throughout history. The properties more interesting that currencies have are:

Common unit of accounting: The users have a common unit accepted by every user in the sys-

tem to value the goods traded in it.

Purchase power: The users decide how to use these currencies. Hence, they have a mechanism

to prioritize the use of different goods based on their necessities.

This wide currency notion can be implemented in different ways based on different properties

that the currency should has. The design decisions are bounded to the trade-off between security,

scalability and availability of the system.

Although this study is focused in the technological characteristics of the payment systems, for a

payment system to be succesfull, its design must consider the point of view of the end user who

will use it. This way, one will have to consider properties such as the applicability (there are

enough users and providers to match their needs), ease of use, convertibility (capacity to change

the virtual currency to real currency), etc. Many of these characteristics can be found in [6].

Figure 1.1 shows different taxonomies, each of which explained in on subsequent sections, in

which currency systems can be divided. So this chapter describes the concepts, uses and alter-

natives using a virtual currency and surveys the most relevant systems describing some kind of

virtual currency to achieve their purpouse.

1.2 Currency Market

We can observe two types of currency markets: open and closed market. In both cases there will

be problems related to the value of the currencies, such as inflation (maintained and generalized

increase of the prices), deflation (opposite to inflation), etc.

1.2.1 Closed Currency Market

Currencies are created by a central organization (the minter). These currencies belong to the

system and they cannot be replaced by outer currencies. Their only one objective is to acquire

goods and services within the system where the currency is valid.
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1.2. Currency Market

Figure 1.1: Different taxonomies in which currency systems can be organized. Notice that each taxonomy
is not mutual exclusive with the rest

9



Chapter 1. Virtual Currency management and payment protocols

In these systems the excessive currency saving is a problem since the money in circulation di-

minishes and therefore the prices diminish due to the increasing value of the currency (deflation).

Another problem related to the saving is that a user can save arbitrary currency for future spending.

Once he decides to spend it, he can monopolize all the market. In order to solve this problem, we

could think about currencies that have a certain time of validity during which the owner can use

it to consume. Passed this time the currency no longer has validity. This measurement stimulates

the consumption and limits the capacity of saving of the users.

The central bank must maintain the control on minted currencies to be able to apply monetary

policies in the system, that is to say, increasing the number of currencies in case of deflation (to

diminish the value of it currencies) or diminishing its number in case of inflation (increasing the

value of the currency).

Most of systems use currencies to control the power of consumption of the different users. Hence,

the exchange between virtual currency and real currency is not addressed in these systems. We

can consider this kind of currency market as closed (Tycoon [7], Peermart [8, 9], Bellagio [10],

etc.)

1.2.2 Open Currency Market

The currencies are created by a central organization as in the case of the closed market. In this case,

these currencies are exchangeable by real currency outside the economic system (for example:

euros, dollars, etc.)

Users purchase these virtual currencies with real money. They can use them within the economic

system to acquire resources or services.

The problem with these systems is the capacity of a user “to put” too much virtual money in the

system with which he acquires a great power to acquire goods and services, monopolizing the

market. A possible solution could be to limit the acquisition of currencies by real money to avoid

that a user has the capacity to saturate the system. That is, a user can only withdraw a limited

amount of currency during a certain period of time (for example, 100 euros per month). As well

as to limit the life of currencies as in the previous case to limit saving capacity.

There are systems that use virtual currencies to facilitate the interchange of real money to the users.

Second Live, PayPal, e-Gold, BidPay, etc. are examples of them. These systems do not have the

issues arised by the creation of an economic system since they serve solely like intermediaries to

make payments between users.
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1.3 Multiplicity of currencies

Taking into account the definition of currency provided in the first section (medium of exchange)

we can consider that a currency has a region in which is the dominant medium of exchange. That

is, in a specific zone there is a dominant currency with which trade goods. For example, in Europe

there is the Euro, in the United States is the Dollar, etc.

An economic system willing to trade goods using some kind of currency should take into account

that reducing the number of dominant currencies in a single common market (as the European

Union) facilitates the trading in a wider zone (currency zone). Therefore, the possibility for match-

ing supply and demand is higher without incurring in the problems with exchange between one

currency to another.

Despite that, to facilitate trade between currency zones there are exchange rates (i.e. prices at

which currencies can be exchanged against each other), that are defined by certain agents on the

market specialized on that purpose and regulated by market institutions.

We can find some examples of systems implementing exchange between different currencies in a

single system such as PayPal or e-Gold. Despite that they describe its service as a way to exchange

real money via internet so they don’t define different virtual currencies.

Other systems implementing a currency system (Ppay [11], Tycoon [7], Karma[12] and Off-line

Karma[13], PeerMint [8], SecondLive, World of Warcraft, etc.) define a single currency inside

their systems to trade with.

Taking into account the previous considerations, we can stat that a system willing to trade goods

using some kind of currency should take into account that using a single currency will simplify its

currency management as well as increase the number of users willing to trade with this currency.

In order to decentralize as much as possible the currency management, once every system has de-

fined its own currency it would born new entities providing the exchange service between different

currencies in different systems.

1.4 Currency representation

We can define two basic abstractions accepted by almost all existing literature to represent the

value of this currency depending on how this currency is represented: account balance based and

token based.

These two basic representations must be interpreted as a physical representation of the currency,
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the way they are represented. That is to say: an account balance is a number stored somewhere

representing the value of the goods a user owns; a token is an object representing a value unit and

it is the minimal unit of representing a good (as an euro cent in the real world).

1.4.1 Account balance based

Every peer inside an economic system maintains an account with a bank by the total value of the

goods that they own. In order to make the payment of a service, a transaction is made through the

bank from the customer account to the provider account. This solution simplifies the management

of the transactions between client and supplier. On the other hand, the currency representation

doesn’t have a physical object which the user can control (it is a number). Hence, they need a

great confidence on the organization which is responsible for the account operations (add, subtract,

etc.).

As we will see, we must consider that a centralized implementation of this bank (Tycoon [7],

PopCorn Market [14], GridBank [15]) can arise problems with its availability due to the load of

the central server. However, a distributed implementation along the users of the system (Karma

[12], PeerMint [8]) must take into account the presence of malicious users who could influence

maliciously in the correct operation of the system. The system relies in the consensus of several

peers to overcome this reliability issue, with the consequential overhead due to the transmission

of messages. This kind of representation need to maintain certain properties referring to security

issues. The system should provide certain guarantees (see Section 1.7) when the account balance

is modified in order to avoid falsification of payments. Depending on the bank implementation, it

could be done by means of trusting the bank (in the centralized implementation) or by means of

consensus of several peers (in the distributed implementation).

1.4.2 Token based

Each peer of the system has an amount of tokens proportional to the value of the goods that they

own. In order to make the payment, the client must transfer a certain amount of tokens to the

supplier by the value of the service. It is the most similar representation of what we know as cash.

Tokens must have certain properties for their correct management: uniqueness in the system (can-

not co-exist two equal tokens); non-repudation (the possession of a token assures the possession

of a certain value and the whole system must accept it as valid); non-forgeable (the users cannot

create tokens, these single can be minted by a minting entity to which every user rely on).

We can find two main tendencies at the time of defining this kind of currency:
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Cash representation: they try to construct a currency system as equivalent as possible to cash.

In order to obtain it, they try to maintain properties such as unlinkability and/or untrace-

ability, properties that cash inherently possess. These two properties are known jointly as

anonymity. Systems that implement this type of representation are [16][17][18][19].

Abstract token representation: although the token has an associated value, it does not address

to maintain the characteristics previously mentioned. They are designed to manage the

resource consumption made by users and to avoid the free-riding problem. In these systems

we can find PPay [11], CPay [20] or the work of Liebau et all [21].

As each token is the minimal unit of payment, there is an overhead associated with a transaction

since each token must be digitally signed, maintain a history of the transactions, etc. This is

due to some security issues, explained in Section 1.7, such as detect double-spending, the non-

forgeability property, etc. In a market environment where the prices are not fixed and their variance

is very high, the overhead generated by the transactions is not inestimable.

1.5 Currency storage

There are different ways to classify the currency management depending on where the currencies

are stored. This classification will depend on the use case scenario as well as which currency

representation is used (previous section). It is important to note that not all the representations

introduced in the previous section could be stored using whatever form of storage explained in

this section. We can define the currency by the following way: local, remote centralized and

remote distributed.

1.5.1 Local

Each user is the one in charge of storing his currencies in a local device (hard disk, usb, local

database, etc.), like a wallet. This way, each user is in charge of his accounts and decides when or

with who do a transaction, without depending on a third party organization. This single abstraction

has sense only if they store tokens because in an account balance based system, the user could

vary his budget arbitrarily unless there is a trusted hardware which does the increase/decrease

operations. Most of the systems implementing token representation store them locally.
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1.5.2 Remote

The currencies are stored remotely to delegate their management to another organization inside the

system. This organization is the one in charge of making transactions between client and supplier,

and to maintain the balance of currencies updated. This decision can simplify the management of

the security of the system, increase the degree of availability of currencies, facilitate the mobility

of users, etc. Depending on the decisions such as decentralization, we can take into account two

types of remote storage:

Centralized: the entity in charge to manage currencies is unique in the system and is in charge

of controlling the correct behaviour of the users. This entity is often called bank (or bro-

ker). The security of the transactions only depends on correct behaviour of the bank. The

protocols associated to the creation of accounts and the transactions have a high component

of security such as authentication that can be solved by means of public key cryptography.

Although the bank idea is a simplification for security issues due to the existence of a single

trust entity, it is important to note that it becomes the bottleneck of the system.

Systems such as Tycoon [7] and PopCorn Market [14] follow this approach and both argue

that the scalability of its system depends to a great extent on the load of the bank. And

it could be very high in a system where the number of transactions can increase while the

number of users increase. If the number of transactions are foreseable, this solution is ideal

due to its simplicity as well as security.

Distributed: in this case, the entity in charge of the management of the transactions is distributed

between the users who form the system. Its main objective is to reduce the load of the bank

previously mentioned. Within this category we can find many points of view depending on

the degree of decentralization and security that is desired and required for the system.

PeerMint [8] and Karma [12] implement a distributed bank where each peer (account holder)

is responsible for the account of another peer (account owner). In order to receive certain

degree of confidence in every transaction, each account holder is replicated depending on

a replication factor which can be understood as a security parameter. In order to carry out

a transaction, it must achieve a wide consensus through all the replicas to isolate the users

who do not act honestly.

Other systems such as PPay [11] and CPay [20] implements systems based on tokens where

each peer (token owner) is responsible of a certain number of tokens. The token owner is

responsible of avoiding malicious behaviuor such as double-spending of tokens, counter-

feiting, etc.
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These distributed implementations assure a certain degree of confidence in the correct operation of

the transactions. That is, in the presence of a high percentage of malicious users, the reliability of

the system diminishes extremely. The problem of these systems is to achieve a reasonable degree

of confidence. If the confidence must be high, the degree of replication must be high too, with

the consequent load that takes place in the system due to the high number of messages needed to

achieve a consensus between users. Although the centralized systems simplify the management of

the transactions and assure a high degree of confidence, their scalability is their weaker point. If

the main objective of the currency management is to allocate resources efficiently without a single

point of failure (i.e p2p Grid) a distributed implementation seems more suitable in exchange for

the commitment between reliability and load due to the replication in the system.

1.6 Transaction Protocol

The transaction protocol is defined in the system to carry out the exchange of goods by means of

currency exchange in the system. Three main actors interact in every transaction: client (payer),

supplier (payee) and the bank. As well as the actors, we can define three steps during the transac-

tion protocol: withdraw, exchange of currency (transaction), deposit.

1.6.1 Bank intervention

We can classify transaction protocols depending on the degree of intervention of the bank.

1.6.1.1 Off-line protocols

The off-line transactions do not imply any contact with the bank (trusted authority). Only customer

and provider are involved in the transaction. The most evident problem of off-line payment is the

difficulty to prevent clients to use more money that they have, that is, to use the same token more

than once (double-spending). This solution considerably diminishes the load of the central bank

making the system more scalable. Despite that, it is impossible to detect the fraud by multiple

spending during the transaction without the existence of a specific hardware which controls that

(such as prepaid cards). A possible solution to this problem is to detect the problem after the fraud

has been committed (after the fact or lazy resolution) instead of preventing it.

Within the off-line protocols, we can differentiate between those tokens that can be used more than

once or those that after making a payment must be returned to the bank for clearing (renewed):
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Transferable tokens: this property tries to diminish to the maximum the load of the central bank.

It allows that the received token by a payment of a service can as well be spent for another

payment without having to deposit it before. This property is especially necessary in p2p

scenarios where the suppliers are clients as well as providers. Currency systems such as

[18] implement this solution at the cost of delaying the detection of the multiple spending.

Non-transferable tokens: although partners continue to maintain the desired independence with

respect to the central bank during the transaction, tokens received by the supplier must be

deposited in the bank for clearing. In scenarios where clients and suppliers are different

entities, it is a good election since once the suppliers receive the payments, the life of the

currency finalize and can be deposited in the bank for their real economic retribution. That

is, the supplier does not need to re-spend the received currencies.

1.6.1.2 On-line protocols

A transaction online implies the intervention of the bank in each one of the transactions. This

solution is considered safer and simple than the off-line transactions since all the work is made in

the bank. This way the fraudulent use can be prevented since the bank must accept the exchange

being done. Systems such as [16][17] maintains the anonymity of the users who participate in

a transaction in exchange for making the transaction online or nontransferable. There is a great

tradeoff between preventing the fraud and making the protocol off-line.

1.6.2 Ordering in transactions

When a transaction is going to be made, one of the arising issues is when the delivering ordering

of good is done. In this sense, we can define two basic operations along the transaction: pay

and acquire. Payment is the instant where clients fund providers account by means of a payment

protocol.

Acquiring a service/resource is the instant where the client executes/uses/acquires the goods nego-

tiated. We should notice that, in general, these two operations are processed by means of different

protocols (one for payment, one for delivering goods).

Serializing these two basic operations makes difficult to guarantee that nor clients neither providers

do not cheat (consumers could pay but the service could not be obtained or service could be

delivered but consumers could no pay for them).

Making these two operations atomically, that is, a client pays if and only if the good is delivered,

is difficult to achieve (if not impossible) if we take into account the services and resources traded
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in a grid market (cpu, memory, storage, video processing, etc.).

One example of atomic transactions are those ones used by NetBill [22, 23]. It assures atomicity

only for specific kinds of goods such as webpages which can be encrypted before delivering the

goods to client waiting for its payment. Furthermore, achieving these guarantees are constrained

by the existence of a trusted central server which makes the system scalability very poor.

Since we cannot guarantee atomicity when transacting Grid goods, depending on the order of these

two operations we can identify different protocols with which clients and providers have to agree

during negotiation: pay before acquire, pay during acquire, pay after acquire.

This kind of protocols arise a security issue regarding the correct ending of a transaction. Neither

client nor supplier have the certainty that the transaction is going to finish correctly. It is the most

faithful representation of the transactions that we can see in the real world.

Pre-payment: pay before aquiring the goods. The client does not have the absolute certainty that

the paid services will be given to him. A reclamation mechanism is needed to give back to

the client the given currencies.

Post-payment: pay after acquiring the goods. The supplier does not have the absolute certainty

that the given service will be paid. It is needed, like before, a reclamation mechanism.

Pay as you go: pay during acquiring the goods. The client makes small payments to the supplier

while he uses the service. It is the fair mechanism for both. If the client detects that the ser-

vice is not the negotiated one the transaction can finalize and if the supplier detects that the

client is not giving to him the intermediate payments can stop the service execution.This last

transaction mechanism is ideal for goods which are used for a long time such as executing

a data-mining applications which can take hours or days to conclude.

In order to allow other payment mechanisms such as subscription (a client do a payment for some

amount regularly to a provider in order to use a specified service/resource), it is only needed

primitives such as payment and receive a payment.

As long as we will not be able to implement dispute free transactions electronically, we should

maintain a log of transactions to resolve disputes between traders. This logging facility is neces-

sary for accounting and auditing a transaction in order to reconcile the potential different points of

view of clients and suppliers.
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1.6.3 Transaction amount

The decision on what system is going to be implemented depends to a great extent on the real

value that the transactions represent. Most of the systems spend huge time performing public key

cryptography operations. If the real value of a transaction is very low, maybe the cost of public

key operations may exceed the value of the payment which in turn is economically inviable.

Making a subjective division the payment can be divided as:

Low-value transactions: also known in the literature as micropayments. We could approxi-

mately understand them like payments by quantities from several cents to a euro. Their

decisions are based on that the public key cryptography is too expensive for payments of

small quantity. These systems are based on reducing to the minimum expression the use of

the public key cryptography, making more emphasis in the use of hash functions. One of

the first systems in implementing transactions of low cost was PayWord [24] by Rivest and

Shamir. Their system is based on the unidirectional properties of the hash functions and

implement what they call hashchains. Many other systems [25][26][27][28] are based on

such concepts. It is important to note that micropayments are strongly focused in electronic

commerce such as payments for watching web pages or for accessing private documents.

Mid-high value transactions: they are payments of variable amounts where the real value of the

transaction surpasses the micropayments. In this type of payments the security is important

since the falsification of a transaction could arise to great losses. For that reason, the costs

associated to the security in the transaction are high. For example, the use of public key

cryptography, the use of a trusted entity to confirm each one of the transactions, the replica-

tion of the entities in charge to manage the balance of users in systems of distributed storage

currency, etc.

1.7 Security Considerations

This section covers only a small part of security related issues concerning currency and its de-

sign and implementation. If the reader is interested in this aspect a more accurate explanation of

different solutions can be found in [16][17][18][19].

1.7.1 Authenticity

We can define authenticity by means of two important aspects in the electronic commerce:
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Authentication: process by which the user identifies itself unambiguously.

Integrity of the messages: process by which it is possible to verify that the messages have not

been modified throughout the transport in a non secure network (Internet).

Both aspects of the authenticity can be fulfilled easily by means of public key cryptography meth-

ods (cyphering data and signing them).

Authenticity is necessary both for account and token based systems because it is needed a non-

repudation mechanism for monitoring the actions of different users and to achieve an irrefutable

proof of that a payment is done by some user.

1.7.2 Privacy

In advanced cryptographic currency systems there is the necessity of introducing certain properties

exclusive to real cash nowadays. That is, they try to apply the same properties of cash to virtual

currency.

In real cash systems, once a user has withdrawn money from his account, the money (coins, notes,

etc.) has no relationship with the user account from which they have been withdrawn. That is,

the bank has no information about which real coins the user has (the bank doesn’t record the bills

retired although they are identified by serial numbers). This property is known as anonimity.

On the other hand, with real cash we can make payments of different amounts to a provider with-

out revealing user’s identity with respect to to the central bank. That is, the bank is not able to

reproduce the history of transactions made with a single coin. This property is known as untrace-

ability.

These two properties allow maintaining the privacy in the payment system. In the world of elec-

tronic currencies these characteristics can be obtained by means of different cryptographic meth-

ods at the cost of increasing the complexity and cost of the transactions.

David Chaum was the first in mentioning the anonymity as a necessity for electronic currency to

be successful. He introduced the concept of blind signatures used later to achieve anonimity in

electronic currency or in electronic voting systems.

The sketch idea of blind signatures applied to electronic currencies is the following one. A user

mints a coin and he modifies it with a random value called blinding factor. This process is called

blinding the coin. The bank signs the currency, which will have a random aspect, discounting

the value of the coin from his account. When it is given back to the user, he eliminates the

blinding factor. From now on, the user has a valid signed coin which has no relationship with the
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withdrawal made before. When some other user deposits this coin in the bank, it will not be able

to relate it with the creation as long as it doesn’t know the blinding factor used to blind the coin.

For an exhaustive explanation of the cryptographic characteristics of these systems we direct the

reader to the article of Chaum and its DigiCash system [16].

This basic idea has several disadvantages such as the ignorance of the bank of what it is signing.

It could become easy for fraudulent users to give a blinded coin to the bank for a value higher than

the value the bank think it is signing.

So, relaying in this basic idea, many other systems have been arising that refine this original idea

removing some of their disadvantages.

1.7.3 Counterfeiting

Throughout the document, it’s mentioned that one of the most important issues to take into account

in payment systems is counterfeiting. The system must prevent impersonation (every user should

know with whom he is dealing) as well as prevent token forgery and multiple-spending of a single

token.

In order to solve the impersonation issue, systems usually relies on a PKI (Public Key Infraestruc-

ture) where a Certification Authority (even it could be bank) issues certificates which bound an

identity (user’s identity) with a public key. In this way, a token signed by the bank cannot be

forged as long as the private key of the minter (the bank) remains secret.

Here, we should take note that anonymity is one of the issues which make a payment system

complex. As long as anonimity is a desired property, we cannot rely on a PKI in order to achieve

the security properties mentioned before. The system must ensure anonymity to a user as well

as detect double spending of a token, and must be able to recognize the responsible of the fraud.

Such systems, where the identity of a user is only uncovered when a fraud is committed, has

been arising since Chaum. They rely on different cryptographic methods such as cut-and-choose,

zero-knowledge-proofs or secret splitting.

1.8 Survey and Comparison

In this section, a more indeep sight of some currency systems is presented paying special attention

in the architectural and design decisions as well as the protocols used to perform the payments and

transactions.
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Representation Storage Transaction Protocol

Account Token Local Remote Bank
intervention

Transaction
value

Peermint[8] X Distributed On-line Indiferent

Karma[12] X Distributed On-line Indiferent

Off-line Karma[13] X Distributed On-line Indiferent

PPay[11] X Distributed Off-line Indiferent

CPay[20] X Distributed Off-line Indiferent

GridBank[15] X Centralized On-line Indiferent

Tycoon Bank[7] X Centralized On-line Indiferent

PayWord[24] X X Off-line Low

Table 1.1: Comparison of Currency systems

In Table 1.1 it is shown a comparison between these systems in order to have a summary of the

most interesting properties and how these systems solve the problem.

1.8.1 PeerMint

PeerMint [8] is an accounting scheme totally decentralized and secure. In this system, the bank

role is distributed among the peers which conform the whole system. The key concept of its design

is that it relies on untrusted components (peers) to carry out secure and reliable transactions.

It is an account based scheme and each peer is the responsible to update and manage a bunch of

accounts. It relies on a PKI [29] to assign each peer of the network a public/private key pair in

order to identify them uniquely.

Due to its key idea of a totally decentralized currency management architecure, PeerMint has to

deal with unpredictable behaviour of peers such as malicious peers1 or the collusion among peers2.

Figure 1.2 shows the basic architectural scheme of PeerMint.

To have a robust accounting scheme and overcome previous mentioned problems, PeerMint uses

session peers which are chosen hashing the id’s of the two peer involved in the transaction. These

session peers may change every transaction, hence the probability of coallition is diminished.

1Peers responsible for a bunch of accounts and change them arbitrarily without explicitly having been asked for a
transfer of funds

2Coallition of peers which allows an account to be changed arbitrarily to overcome redundant information which
could serve as a basis to discover this bad behaviour
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Figure 1.2: PeerMint basic scheme. Figure taken from [8]

Furthermore, each entity in the system (account holder3 and account session4) is replicated to a

factor of k. Hence, every modification of any account has to be performed by each replica and

achieve a consensus.

This solution has the advantage of a completely descentralized architecture but it lacks of scala-

bility due to the overhead generated by redundant messages sent to achieve consensus.

1.8.2 Karma

Karma [12] is an economic p2p framework which keeps track of the resource consumption and

resource contribution of each participant. Each participant in the system owns an account rep-

resented by a single scalar value (karma). This account is managed by a set of replicated nodes

(bank set) intended to resits malicious behaviour of the resorce provider, consumer or a fraction

of the members of the bank set.

It is an account based scheme where each account is managed by a set of peers. Each peer is

assigned a secure identifier and its account is assigned an identifier equal to hash(nodeID). Thus

the bank set which manages this account are the k closest nodes in the identifier space to the

account’s id.

Assume a node A and an account id h(A). Each member of the bank set of h(A) stores the amount

of karma signed with A’s private key, as well as a transaction log containing recent payments.

Signing of the balance by A ensures that the value is tamper resistant. The transaction log acts as

3Peer responsible to managing peer accounts
4Peer responsible to carrying out the transaction between two accounts
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proof of A’s payments.

Karma deals with the problem of inflation and deflation by re-valuating periodically the outstand-

ing karma so that the per-capita karma is maintained at a constant level. This re-valuation comes

at a cost of θ(N2) messages where N is the number of peers in the system.

Figure 1.3: Karma basic scheme. Figure taken from [12]

As can be seen in Figure 1.3, the k members B’s bank set must coordinate the transaction with the

k members of the A’s bank set leading to a message complexity of θ(K2) due to all to all commu-

nication, introducing a high overhead for each transaction in order to avoid malicious nodes.

As in the case with PeerMint, this solution has the advantage of a completely descentralized archi-

tecture but it lacks of scalability due to the overhead generated by all two all comunications during

transfer of funds and the re-valuation mechanism to avoid inflation and deflation.

Explicar Karma y decir que el protocolo de off-line karma es similar pero basado en tokens (y que

los tokens van aumentando de tamaño a lo largo de su vida).

1.8.3 PPay and CPay

PPay [11] (a.k.a PeerPay) is a transferable token-based system. Its main idea is to delegate to the

peers the burden of the bank’s work (single server in charge of managing the account balance of

each peer).

Assume a single bank which mints coins. Each peer of the system buys coins at this bank and

from now on this peer is the owner of such a coin. To transfer the coin to another peer in order
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to do a payment, instead of involving the bank server to do such a transaction, the owner of the

coin transfer the ownership of the coin to the receiving peer. The receiving peer then is called the

holder of the coin. Once the holder wants to spent this coin again, it contacts the owner in order to

change the coin’s ownership again to the new holder. If the owner of the coins goes off-line then

the bank takes over the coin for future transfers.

This way, the bank is only involved in minting coins and in selling them. Their transferability

is delegated to the peers. This scheme is efficient and scalable while peers are on-line for long

periods of time but, if peers join and leave very often, the bank will be involved in almost every

transfer so the burden of the work will be given back to the bank worsening its efficiency and

scalability.

CPay [20] shares similaraties with the previous system but the way of choosing the owners of the

coins. CPay only allows long-lived peers to own a coin and be responsible for transfering them.

An incentive is given to those peers proportional to the work done. This way, CPay deals with the

heterogeneity inherent to p2p systems.

1.8.4 GridBank and Tycoon Bank

Both systems are centralized banks in the whole sense of the word. Despite that, GridBank is

extensible to whatever kind of payment currently (or futurely) deployed in e-commerce. It imple-

ments a resource usage mechanism by means of RURs (Resource Usage Record) which helps in

the task of accounting what resources have been consumed by which users. The other way, Tycoon

Bank has a simple protocol based on xml-rpc invocations to the server. Different transactions are

serialized in order to avoid inconsistencies while transferring and, thus, provide ACID properties

to its databse. It manages security by means of Public Key Criptography.

The scalability and efficiency of both systems is poor due to its centralized architecture and the

cost of cyphering and decyphering messages. Despite that, both systems argue that their scalability

is enough in order to carry out their purpose.

1.8.5 Hash Chains

This family of protocols are based on the idea that public key cryptography has an expensive

computational cost and, therefore, the cost of performing such operations outweight the econom-

ical cost of a low-value transaction. In other words, the argue that the cost of counterfeiting a

transaction outweight the transaction’s value. A group of protocols implementing this idea are

[24][25][27] [26].
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The basic idea is to minimize the public key cryptography by using the efficiency provided by one

way functions (a.k.a hash functions). Let H be a hash function (i.e MD5, SHA1, etc.) so it is easy

to compute but difficult to revert. A user computes a H − chain consisting of the values

x0, x1, x2, ..., xn

where

xi = H(xi+1) for i = 0, 1, 2, ..., n − 1

Then it sends the root x0 along with the signature of this token to the resource provider. To

perform successive payments, the user sends the next consecutive hash value. The provider only

has to verify that

xi−1 = H(xr)

where xi−1 is the last verified payment and xr is the payment to verify.

For the provider be able to withdraw those payments to the bank, it has only to send the last

received payment xi along with the signature of x0. The bank only has to iterate i times H against

xi and verify that the value x0 is equal to the signed value sent by the vendor.

This system resuces the cost of the transaccion. Despite that its flexibility is very low due to the

impossibility to agregate payments from different clients as well as the reutilization of those hash

chains. In p2p systems, the relationship between clients and provides might not be stable so the

use of a different hash chains for different partners might have a high associated cost.
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Distributed Hash Tables

2.1 Introduction

A distributed has table is, as its name suggests, a hash table which is distributed among a set of

cooperating computers, which are refered to as nodes. Just like a hash table, it contains key/value

pairs, which are refered to as items. The main service provided by a DHT is the lookup operation,

which returns the value associated with any given key. Moreover, a DHT also has operations for

managing items, such as inserting and deleting items.

Because of limited storage/memory capacity and the cost of inserting and updating items, it is

infeasible for each node to locally store every item. Therefore, each node is responsible for part

of the items, which it stores locally.

This architecture enables DHTs to efficiently handle large amounts of data items. Furthermore,

the number of cooperating nodes might be arbitrarily large (from a few nodes to many thousand

or millions in theory).

In 2001 the first DHTs where developed and since then, several other algorithms developed to

improve DHTs results have arised with similar properties but different implementations. These

essential properties are:

Scalability in terms of:

• Routing information: the typical number of hops required and the size of the routing

table is less or equal to log(n) where n is the number of nodes.

• Items dispersed uniformly: each node stores an average of d
n items where d is the

number of items and n the number of nodes.
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• Support for dynamism: a join/leave or a failure of a node, only implies the redistribu-

tion of the average storage of a node ( d
n ).

Self-managment in terms of:

• Routing information: when a node join/leave/fail, routing information is updated ac-

cordingly to reflect the event generated.

• Items stored: when a node join/leave/fail, the items stored in the DHT are redistributed

automatically depending on the type of the event.

– In case of join: the new node retrieves the items it is now responsible for

– In case of leave: the old node pushes the items to the new responsible node

– In case of failure: the new responsible node retrieves the items from the replicas

maintained in the DHT.

Fault-tolerant: a DHT beeing fault-tolerant implies that lookups should be completed success-

fuly even if some nodes fail. This is typically achieved by replicating items as it will be

explained later in Section 2.3. Hence failures can be tolerated to a certain degree as long

as there are some replicas of the items on some alive nodes. For a complete description of

what a fault tolerant system need to achieve see [30].

A key design issue is how to map different identifiers to some nodes and made it in some way that

the system maintain its properties. Most of the DHTs were based on one of two ideas for mapping

key identifiers to nodes:

Consistent hashing : is a hashing scheme such that the number of items needed to restore the

state of a node is minimized when nodes are added or removed [31]. Consistent hashing

tends to balance load, since each node receives roughly the same number of keys and in-

volves relatively little movement of keys when nodes join or leave the network.

Plaxton mesh : is a scheme that enables efficient routing to the node responsible for an object,

while requiring a relative small routing table [32]. The idea is basically, once each node

has an identifier associated, route the message to the longest maching prefix of the routing

table. For example, if a node has in its routing table the nodes A14B6 and A1357 and it has

to forward a message to the id A1300 it will route the message through the node A1357 as

the longest maching prefix is A13**.

Currently, a recent publication [33] argued that a common API for these kind of overlays (a.k.a

structured p2p overlays) would facilitate independent innovation in overlay protocols, services,
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and applications, to allow direct experimental comparisons, and to encourage application devel-

opment by third parties. Moreover, it serves as a reference to classify different layers in the de-

velopment of an application based on one of these structured p2p overlays. This way, an abstract

representation of the different services provided by each layer of the DHT can be separeted driving

the application developer to clearly design it independently of the underlying DHT infraestructure.

Figure 2.1: Common API for Structured p2p Overlay Networks

In Figure 2.1 from [33] there is the disctintion between the different layers. As long as this project

will be developed arround the KBR Layer and the DHT Layer a brief description of these two

components is as follows (for a complete description of the each layer and a simple API for each

one see the previous cited article):

KBR Layer : provides a routing layer by which each node is able to send a message to an iden-

tifier. This message will be processed by the responsible node at the sending time for the

given identifier. The message might run across several nodes depending on the protocol

specific algorithms for routing.

DHT Layer : provides the same functionality as a traditional hashtable, by storing the mapping

between a key and a value. This interface implements a simple store and retrieve functional-

ity, where the value is always stored at a live node in the overlay to which the key is mapped

by the KBR layer. Values can be objects of any type.

Once outlined the general idea and characteristics behind DHTs, a more deep sight is necessary in

order to understand the solution proposed in Part II.

Section 2.2 make a more precise explanation of the internal structure of a DHT and how the nodes

are organized to achieve the properties previously mentioned. Section 2.3 shows replication tech-

niques used to maintain persistent data and provide a certain degree of fault-tolerance to the DHT.

Section 2.4 makes a brief explanation of the algorithms used by three current DHTs.
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2.2 DHTs structure

So far, this chapter has outlined several important properties that DHTs offer. Despite that, it

is important to introduce the general structue and organization of the DHTs to understand the

different approaches taken to address these properties.

Throughout this document, only logarithmic state DHTs are introduced taking into account the

taxonomy presented in [34]. They are based on the idea that the minimum information necessary

to lookup a key in θ(log(N)) hops is θ(log(N)), where N is the number of nodes in the overlay

network. Three examples of this kind of DHTs are surveyed in Section 2.4.

Two basic components of a DHT are their overlay network topology and the routing information

used to achieve the lookup operations. Although each DHT implementation differs substantially,

some common characteristics are shared and introduced in the next subsections to provide a global

view of how a DHT is organized and managed.

2.2.1 Overlay network topoly

Every structured overlay network makes use of an identifier space consisting on the integers

0,1,...,N-1 where N is a well-known fixed parameters representing the maximum number of iden-

tifiers that nodes may use.

Every node in a DHT has a unique identifier from the identifier space. Each node u has a pointer1

to the first node following it clockwise on the identifier space (Succ(u)) as well as the first node

preceding it (Pred(u)). The nodes therefore form a kind of distributed double-linked list that is

sorted by the identifiers. Almost DHTs refer to this linked list as the ring.

Every identifier in the identifier space is under the responsibility of a node in the following way.

The whole identifier space is partitioned into P intervals, where P is the current number of nodes

in the system. Each node, n, is responsible for one interval. This way, a node is responsible for the

interval consisting of all identifiers in the range (pred, n] wher pred is the predecessor’s identifer

and n is its own identifier (See Figure 2.2 for a basic dht structure).

To provide the DHT a certain degree f of fault-tolerance in case a node fails, each node keeps

track of its f closest nodes in the identifier space. This way, if a set of k consecutive nodes in the

identifier space fail, the ring will be still connected. This list is usefull too to trunk the lookup

process when a message is close enough to avoid making more hops than necessary. These list are

1A pointer is an entry with information about the node’s identifier and its network address with which the commu-
nication can be established
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Figure 2.2: It is a DHT ring based topology as an overlay network. The identifier space is in the range [0,
N-1] where N=16 in this case. Each node u has its own Pred(u) and Succ(u). All together form a double-
linked list without beginning nor ending. It is shown how Node 15 is responsible for the identifiers between
its predecessor and itself (12,13 and 14).

called predecessor and successor lists (a.k.a leaf-set).

2.2.2 Routing information

As important as the overlay network topology is how a message is routed to achieve the θ(log(N))

complexity in the number of hops. So far, with the predecessor and successor pointers, a ba-

sic lookup algorithm could lead in the worst case to N hops to reach the responsible of a given

identifier.

The first idea was to introduce some other routing information to make the path to the destination

shorter. The same idea as the dichotomic search in linked lists could be applied to this ring. Each

node keeps track of a node with which divide the identifier space by a half, another one by a

quarter, and so on... This way, each hop jumps at least half of the identifier space remaining to

arrive to the destination.

Depending on the definition of the identifier space and the routing protocol, the information stored

in the routing table could change significantly as it will be shown in Section 2.4.
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2.3 Replication schemes

2.3.1 Replication as a technique to achieve fault-tolerance

The key tecnique to actually achieve fault tolerance in distributed systems [30] is redundancy

(a.k.a replication). The idea is to replicate processes (or components in a distributed system) and

organize them in groups. The key property that this group of identical replicated components has

is that when a message is sent to the group itself, all members of the group receive it. In this way,

if one process in a group fails, hopefully some other process can take over for it [35].

The purpouse of introducing groups is to allow processes to deal with collections of processes as

a single abstraction. Thus a process can send a message to a group of servers without having to

complain about its internal structure.

There are two important issues concerning replication schemes when designing a fault-tolerant

system.

Replication scheme : defines the way a group of processes could be logically organized and how

the communication protocol is managed (when, how and to who a message is sent). These

schemes are rather generic and system independant, hence they serve as a basis to construct

fault-tolerant system.

Replica placement : defines the placement of different replicas to achieve certain properties (ge-

ographical locallity, load balancing, etc.). This decission is system dependant and specific

to system protocols so it will be shown in Section 2.3.2 different replica placement schemes

for DHTs.

(a) Primary backup (b) Active Replication
Figure 2.3: Two different approaches for replication

Depending on how the messages are sent and how, when and who updates the replica state, repli-

cation schemes can be divided into two main techniques as shown in Figure 2.3:
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Primary-backup replication: This technique uses one special replica which plays a special role.

It receives requests from clients, processes them, update its own state, send the state to

backup replicas and waits until all backup replicas send a response. Once all backup replicas

have been updated, the primary returns the response of the request to the client. If the

primary replica fails, one of the backup replicas takes over from the group as a primary.

Active replication: Also called state machine approach, this technique considers all the replicas

with the same role without the centralized management of the primary-backup approach.

In this scenario it is the client who sends a messages to all the non failing nodes inside the

replica group. This methodology requires that all nodes receive every message in the same

order in order to carry out the message processing properly. The failure of one replica is

transparent to the client as long as the client is responsible to wait for the response of one,

all or some of the replicas.

Each replication technique has its own pros and cons. For example, in a primary-backup scheme

the failure of the primary is not transparent to the client and therefore the client might perceive

an increase in the latency waiting for the response due to the reissuing of the request. By the

other way, in an active replication scheme the failure of a node is transparent. Nevertheless, it

needs a total order in the reception of the messages in every replica in order to process the request

consistently with the rest of the group. In this case, a primary-backup scheme supports an implicit

order in the messages as long as the primary replica is the responsible to send the messages in

order to the rest of the replicas.

2.3.2 Replication mechanisms in DHTs

In this section an overview of different replica placement mechanisms is introduced. Replica

placement in DHTs can be defined as the mechanism by which a node elect other nodes to maintain

a replica of the content beeing stored in the DHT. Replication over a DHT assume a replication

factor of f, where f is the number of replicas that the DHT must maintain to achieve the desired

degree of fault-tolerance.

The main mechanisms to choose replica placement can be devided in neighborhood replication or

identifier replication.

2.3.2.1 Neighborhood replication

The idea is to elect the nodes which will conform the replica set from the neighborhood of a

node. A neighborhood of a node can be understood as its successor list or its leaf set. These two
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approaches are very similar and its applicability depends on the routing protocol of the underlying

KBR Layer.

Leaf-set replication : stores a replica of an object with identifier id in its f
2 closest successors

and its f
2 closest predecessors. This mechanism is used by Pastry [36].

Successor-list replication : stores a replica of an object with identifier id in its f closest succes-

sors of the item’s identifier. This mechanism is used by Chord [37].

The reason for this difference is due to the routing protocol used in the underlying KBR Layer.

If the routing always proceeds in clock-wise direction, the best approach is using successor-list

replication, because the new responsible for a given identifier in case a node fails is its successor.

A DHT using this mechanism could be Chord [37]. If the routing protocol can proceed in both

clockwise and anti-clockwise direction, the best approach is using leaf-set replication, because the

responsible to solve lookup operations in case a node fails could be its successor or predecessor

depending on the direction taken by the message routing. This mechanism is used, for instance,

by Pastry [38].

These solutions were proposed in order to fulfill a main purpose: replicate items stored in p’s suc-

cessor node, such that if p fails, lookups can be handled by its successor, since p’s responsability

is delegated to its successor automatically when p fails.

Nevertheless, these schemes have some disadvantages. The most import one is the necessity to

exchange at least f messages every time a node joins or leaves. By definition, the f nodes inside

the leaf-set (or successor list) of a node which leaves the system will belong to the leaf-set (or

successor list) of a node which they where not in previously. Hence, a message to each one of

these new neighbors has to be sent. Figure 2.4 shows an example.

2.3.2.2 Identifier replication

The consequence behind neighborhood replication is that the nodes are the subject of the replica-

tions. That is, each node replicates every item stored in its f predecessors, no matter how many

items has each node. A range of identifiers very populated would lead to a saturation of the nodes

which covers that range.

The idea behind identifier replication is, as its name suggests, replicate identifiers, not nodes.

Hence, every identifier has a fixed set of replica identifiers selected by a specific mechanism. So

every node responsible for each one of the replica identifiers will host the item as a replica.
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(a) Before failing a node (b) After failing a node

Figure 2.4: Assume a replication factor f of 4. For each node n (black ones in the figure) there is a
predecessor pred and a successor succ. Each node n stores items in the range (pred, n] and replicates
the items stored on its f predecessors. In 2.4(a) node 12 has stored its own items and the items from its f
predecessors (9,10 and 11). In 2.4(b), node 12 has failed. Therefore, to maintain the replication degree of
4 some other nodes must take over them. In this example, nodes 13,14 and 15 replicates items from nodes
9,10 and 11. So f messages must be sent.

This approach has several advantages with respect to neighborhood replication. First, this ap-

proach enables the application to perform parallel lookups to any number of replicas concurrently.

Therefore, a node can speed up the lookup process by picking the first response that arrives. Sec-

ond, the availability of the content stored is rised up due to the different routes that concurrent

lookups take. For example, when searching for the item i with identifier k, concurrent lookups are

made to the different nodes which holds the replica identifiers for k, leading to mutually exclusive

paths. If one path to a replica is broken (i.e. an intermediate node has failed) the rest of the paths

are unaffected and might finish correctly.

Finally, join and leave operations have a message complexity of θ(1) reducing the θ( f ) complecity

of neighborhood replication. A node joining or leaving only requires to exchange data with its

successor prior to joining or leaving. No other exchange of data items is required to restore repli-

cation degree.

Two different approaches to select the associated replica set of a given identifier are:

Multiple Hash Functions : it is based in using several hash functions for determinig replica

placement. For a replication factor of f , f hash functions are needed and the replica set is

obtained by hashing the identifier of the item to replicate with each one of the hash functions.

This mechanism is implemented by CAN [39] and Tapestry [40].

Symmetric replication : the idea is to divide the identifier space into N
f equivalence classes such

that identifiers in the same equivalence class are all associated with each other. For example,

in an overlay network with N=16 and a replication factor f of 4, the identifiers 0, 4, 8 and
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12 belongs to the same equivalence class modulo f . This example is shown in Figure 2.5.

This scheme was built specifically for DKS [41] but it is rather generic to be adopted by any

DHT.

Figure 2.5: Assume a ring with 16 nodes and a replica factor f of 4. Identifiers in the same congruence
class are associated. In other words, the responsible to store an item with identifier id will be the responsible
to store a replica for the rest of identifier in the same congruence class as id. This leads to a symmetric
balanced storage along the ring.

The main difference between these two mechanisms to find the replica identifier is its load bal-

ancing across the ring. While in symmetric replication each identifier (and therefore each item)

is stored at fixed associated identifier and in a symmetric way along the ring, in the multiple hash

functions approach the replicas for an item are dispersed along the ring depending on the result of

each hash function, which makes it difficult to predict a fair load balancing across nodes.

Despite these schemes seems to solve the problem arised with neighborhood replication, they

have its own drawbacks. In the case of multiple hash functions mechanism, the inverse of the

hash function must be known to maintain the replication factor. It means that, as long as this

requirement is impractical, the the replication degree is not restored once a node has failed. The
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parallel put and lookup mechanism could solve this problem. Nevertheless, this option could lead

to an item dissapearing from the system if it is not often updated.

Figure 2.6: Based on Figure 2.5. The interval (1,3] is replicated by the nodes in the interval (5, 7]. If node
3 fails, the interval stored in this node must be restored from two different nodes (nodes 6 and 7).

In the case of symmetric replication, althought it is possible to restore the replication degree once

a node fails, it could lead to a higher complexity. It means that the interval belonging to a failed

node may be recovered from more than one alive node. Figure 2.6 shows this complex retrieving

of items.

2.4 Survey and comparison

As outlined previously, DHT’s are a massively scalable way to organize several nodes in an overlay

network. In this section it will be shown how different DHTs are organized and managed taking

into account the basic structure outlined in the previous section. For a larger and exhaustive

explanation of each system see the referenced paper in each subsection as well as [42] and [34]

for a good comparison. A summary table comparing these systems can be found in Table 2.1

We have selected four DHTs. Chord is one of the first implementations of a DHT and it is used

as a reference due to its simplicity. Pastry and Tapestry are very similar and they are based on the

plaxton mesh. Finally, DKS is a novel approach as a generalization of the Chord architecture but

with a low-bandwidth topology and several algorithms which improves DHTs performance. Just

to mention, DKS is being developed at the Royal Institute of Technology (KTH) and the Swedish

Institute of Computer Science (SICS), both of them partners of the european project Grid4All [3].

2.4.1 Chord

Chord [37] assumes a circular identifier space of size N and unique IDs are associated with both

data items and nodes by means of a variant of the previously mentioned consistent hashing.

Each Chord node u maintains information about:
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Successor and Predecessor : each node has its own Pred(u) and S ucc(u) to maintain the ring

connected.

Finger Table : in addition, a node keeps M = log2(N) pointers called fingers. The set of fingers

of node u is Fu = (u, S ucc(u + 2i−1)), 1 ≤ i ≤ M, where the arithmetic is modulo N.

In order to route a given message to an id, the node forwards the message to the closest finger

in clockwise direction of its finger table. This way, the routing protocol assures that the distance

in the identifier space is decreased by a half after each hop leading to a θ(log2(n)) complexity in

routing messages.

When handling with dynamism, that is peers joining and leaving, Chord uses a stabilization pro-

tocol running periodically in the background to update the successor pointers and the entries in

the finger table. The correctness of the Chord protocol relies on the fact that each peer is aware of

its successors. When peers fail, it is possible that a peer does not know its new successor and thus

the routing could fail. The stabilization protocol assures that failures are corrected eventually.

This DHT was one of the first implementations of the consistent hashing approach previously

introduced (Section 2.1) to map identifiers to nodes. Although in its first implementation, Chord

didn’t handle replication, in [37] argue that replicating items in the successor list could lead to an

enough fault-tolerant storage as long as if a responsible node for a given identifier fails, the next

responsible will be the first successor in the successor list of the failed node.

2.4.2 Pastry and Tapestry

Pastry[38] and Tapestry[40] makes use of Plaxton-like prefix routing to build a self-organizing

ring. Both of them are very similar so it will be shown how Pastry is organized in order to have an

idea of how a system with a Plaxton-like structure works.

Each peer in the overlay network has a unique 128-bit nodeId. This nodeId is assigned randomly

when a node joins the system. Each data also has a 128-bit key. The data is stored in the node

whose id is numerically closest to it key.

Each Pastry node maintains a routing table, a neighborhood set and a leaf set.

Routing table : Assuming a network consisting of N nodes, a node’s routing table is organized

into log(N) rows with 2b−1 entries each row. The n-th row of the routing table contains the

nodeIds and IP addresses of those nodes, whose nodeId shares the present node’s nodeId in

the first n digits but different in the n+ 1 digit. If there are more than 2b− 1 qualified nodes,

the closest 2b − 1 nodes will be selected, according to proximity metric.
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Figure 2.7: Figure from [42] shows a simple Pastry routing table, leaf set and neighborhood set of a Pastry
Peer.

Neighborhood set : Neighborhood set contains the nodeIds and IP addresses of the nodes that

are closest to the present node.

Leaf set : Leaf set contains the nodeIds and IP addresses of the half nodes with numerically

closest larger nodeIds, and half nodes with numerically closest smaller nodeIds, relative to

the present node’s nodeId.

In order to route a given message, the node first checks to see if the key belongs to the range of

nodeIds covered by its leaf set. If so, the message is forwarded directly to the destination node, or

in other words the node in the leaf set whose nodeId is closest to the key. If the key is not covered

by the leaf set, then the routing table is used and the message is forwarded to a node that shares

a common prefix with the key by at least one more digit. In certain cases, it is possible that the

appropriate entry in the routing table is empty or the associated node is not reachable, in which

case the message is forwarded to a node that shares a prefix with the key at least as long as the

present node, and is numerically closer to the key than the present node’s nodeId. In Figure 2.7,

an example of a Patry node’s routing table is shown.

The main difference between Pastry and Tapestry is its way of replicating the items. While Pastry

makes use of the leaf-set replication mechanism, Tapestry makes use of the multiple hash functions

approach.
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2.4.3 Distributed k-ary System

Distributed k-ary System (or DKS for short) [43] began as a general abstraction that can be used to

derive most of the existing DHT lookup services. In other words, the idea of k-ary search seemed

to be general enough to derive several DHT-based algorithms. This way, most of the existing

DHTs can be seen as instances of DKS.

Maintaining the idea of a general framework to develope and improve DHT algorithms, DKS

introduce three parameters that specify some of its properties and can be adjusted to suit ones

needs:

• N is the maximum number of nodes that can be part of a DKS. So far, the idea is similar

with the basic idea of DHT explained in previous sections.

• k is the search-arity of the network. Searching for a value in the network can be modeled

as a k-ary tree with the node that initiates the search as the root node. The higher the value

of k, the less messages are needed to perform a search, but the bigger are the routing tables.

k should be chosen according the formula N = kL, L ∈ N, where L is called the number of

levels in the search or the depth of the search tree. Figure 2.8 shows a ring with L of 3, a k

of 4 and, thus, an N of 64.

• f is the fault-tolerance of the network. In any given DKS, predecessor and successor points

to f consecutive nodes respectively. Thus, f − 1 consecutive nodes may fail simultaneously

and the network will recover gracefully without loosing data. f should be chosen as a divisor

of N.

In this context, it can be seen that Chord is an instance of the DKS where the k parameter is fixed

to 2, and N and f the same as in the Chord definition.

Despite beginning as a framework for studying and analyzing different DHTs solutions, DKS

growed up by itself with efficient algorithms that could be applied to other DHTs structures. Some

special characteristics and algorithms which make DKS an efficient and special solution are:

Atomic Ring maintenance : provide algorithms to maintain a ring structure which guarantees

atomic or consistent lookup results in the presence of joins and leaves, regardless of where

the lookup is initiated. Put differently, it is guaranteed that lookup results will be the same

as if no joins or leaves took place (a.k.a lookup consistency2). This is a strong guarantee on

top of which more robust and hard semantics can be build.

2At any time, there is only one node responsible for a given identifier
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Figure 2.8: Figure taken from [41]. Routing table of node 0, for N = 64 and k = 4. The dotted arrows are
the start of the intervals. The dark regions represent the respective intervals. The left most figure shows the
intervals on level one. The center figure shows the intervals on level two. The right-most figure shows the
intervals on level three.

Low bandwith topology : there is no separate procedure for maintaining routing tables such as

Chord (which uses periodic stabilization; instead, any out-of-date or erroneous routing entry

is eventually corrected on-the-fly thereby, eliminating unnecessary bandwidth consumption.

DKS uses two main tecniques called Correction on Use and Correction on Change which

are based on the idea that the routing information is updated whilst the node uses it. In

other words, the routing information might be innaccurate if the node does not use it. This

way, the messaging system piggyback information about the routing entries used in order to

correct them in case they were wrong [43].

Efficient Broadcast : efficiently broadcasts a message to all nodes in a ring-based overlay net-

work in θ(logN) time steps using n overlay messages, where n is the number of nodes in

the system. An improvement respect other multicast services in DHTs is its ability to avoid

sending redundant messages.

Symmetric replication : is the only one DHT implementation which uses this kind of replica-

tion mechanism which makes join and leaves operations very efficient in terms of message

complexity.

With respect to the information managed, DKS maintains:

Leaf set : Leaf set contains two lists. The Front list, also called Successor list, and the Back

list, also called Predecessor list. They are used to achieve fault-tolerance in the presence

41



Chapter 2. Distributed Hash Tables

of failures. Each list contains f pointers to consecutive nodes in clockwise and counter

clockwise respectively.

Routing table : The routing table is divided into L rows and K columns. Each entry in the routing

table stores the responsible for the interval k of the level l.

Taking into account this information, the routing protocol is similar to the Chord solution. For a

given message with a destination id, the message is forwarded to the closest node in clockwise

direction of the routing table. As each pointer in the routing table divides the space by a k fac-

tor, each hop decreases the distance remaining in the identifier space by a factor of k leading to a

θ(logk(n)) complexity in routing messages.

Chord Pastry Tapestry DKS
System

Architecture
Uni-directional and
circular space

Plaxton-style mesh Plaxton-style mesh Uni-directional and
circular space

System
Parameters

N-number peers in
network

N-number of peers
in the network, b-
number of bits used
for the base (B=2b) of
the chosen identifier

N-number peers in
network, B-base
of the chosen peer
identifier

N-number peers in
network, k-number
of partitions at each
level, f -number fault
tolerant parameter

Routing
Performance

θ(log2(N)) θ(logb(N)) θ(logb(N)) θ(logk(N))

Routing
State

log2(N) logB(N) BlogB(N) + BlogB(N) logk(N)

Peers
join/leave

θ(log2(N)2) θ(logB(N)) θ(logB(N)) θ(1)

Replication
Scheme

Primary-backup Primary-backup Active replication Active replication

Replica
Placement

Successor-list Leaf-set Multiple hash func-
tions

Symmetric replica-
tion

Table 2.1: Comparison of various structured p2p overlay networks in terms of its properties and theoretical
performance
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Consistency in DHTs

3.1 Introduction

Despite the scalability, availability and fault-tolerance suggested by Distributed Hash Tables, their

lack of support for replication of mutable data and for strong consistency models is a problem for

becoming a widely accepted model as a viable basis for the future generation of overlay networks.

In this context, mutable data should be understood as those data that might be modified during the

data life-time. In other words, data which is mutable might be modified instead of only inserted or

deleted from the DHT. This new necessity implies a new semantic for the put operation of the DHT

as well as new mechanisms to guarantee these semantics without losing any property inherent to

DHTs.

So far, most DHT-based systems have restricted their focus to immutable data or weak consistency

semantics based on cached copies. In such systems, the value of data item can be changed by

removing it from the DHT and reinserting it with a changed value. However, this approach will

not guarantee that applications will not see older cached copies of data, leading to imprecise

consistency semantics. Even if cached copies would be removed, the solution would lead to an

important overhead which would derive in an impractical solution.

It is important to note that depending on the application necessity, different approaches to reach

consistency are possible, from less consistent semantics to more stricter ones. The most important

problem to maintain a certain consistency model in DHTs is its high dynamism and the object

replication done to maintain high data availability. Therefore, algorithms to solve this issue should

deal with replication as well as with the high dynamisn inherent to DHTs.

Several consistency models have been defined so far [30] to exactly define which kind of consis-
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tency is necessary at the application level. Despite that, regarding DHTs, consistency is defined

as the guarantee to get the latest data put in the DHT. The definition of when the latest put has

been performed is mechanism dependant. Therefore, throughout the document, it will be referred

indeferently retrieving latest data as consistent data or viceversa.

Unlike last efforts with DHTs in sharing a common API[33], consistent data in DHTs is achieved

by modifying the algorithm of the put and get operations in order to guarantee consistency. So

there is no common concepts to survey on. Thus, a summary of different approaches taken to

achieve consistency is presented in Section 3.3. Despite that, a first classification of different

mechanisms to achieve consistency in DHTs is presented in Section 3.2.

3.2 Consistency mechanisms

Despite there is no common mechanism to achieve consistency in DHTs developed in this research

area, a first classification can be done depending on the scope of the consistency mechanism. In

other words, consistency mechanisms could be divided depending on what element of the DHT

should be consistent: key consistency or data consistency.

3.2.1 Key Consistency

It is defined as, at any given time, no more than one peer claims to be the responsible for a given

identifier. These sort of mechanisms deals with the dynamicity and churn1 in DHTs as long as it

could lead to incorrect or out-of-date routing tables.

This seems to be a rather modest goal, but in practice is often violated. The most probably reason

for that is the stabilization protocol used in most DHTs to correct routing tables as long as each

join, leave or failure event lead to a change in the routing table. If these events are not detected

correctly, different nodes might have incorrect views of its neighbours (incorrect routing tables).

As an example, in a PlanetLab deployment of OpenDHT [44], for the most measured period,

around 5% of the keys have multiple responsibles and at certain times the fraction of inconsitent

keys spikes to a much higher value (around 40%), presumably due to increased churn.

So the challenge is to keep only one responsible for any given identifier at any time in the life-

time of the overlay network taking into account the dynamicity (nodes joins and leaves) of this

peer-to-peer network.

1Churn in DHTs is defined as the constant leaving and joining of nodes concurrently.

44



3.3. Survey and comparison

3.2.2 Data Consistency

It is defined as at any given time, a get operation returns the last data inserted in the DHT with

a put operation. So they solve the issue of returning the most current data instead of stalled data

taking into account that messages might be lost or replicas might fail.

They deal with replicated data and maintaining data up-to-date even in the presence of dynamic

replica set membership and different replica states.

Maintatining replicated data among several nodes in a distributed system taking into account con-

sistency is not an easy issue to deal with as long as there is a really important trade-off between

eficiency and escalability.

As it will be shown later, they usually rely on the Paxos algorithm [45] to achieve consensus in

order to return the most up-to-date data value in each query or using some kind of ordering making

use of timestamping to order the put and get events [46].

Thus, the challenge is to provide the data related to the latest write operation of an item regardless

when this write was performed and regardless the number of failures (in terms of failed nodes or

messages lost).

3.3 Survey and comparison

As previously outlined , no common mechanism to achieve data consistency has been developed

in the DHT area. In this section it will be presented a survey of differents mechanisms to provide

consistency in DHTs by means of the two mechanisms presented previously. Table 3.1 shows a

comparison of the forementioned mechanisms.

3.3.1 Atomic Ring Maintenance

This technique stands for the ability to handle multiple joining and leaving of nodes, such that all

next successor and predecessor routes still form a valid ring after any number of nodes joined or

left concurrently.

DKS holds as the only one DHT which guarantees key consistency making use of this technique.

In fact, this tecnique was introduced by the developers of DKS as a generic technique applicable

for a wide range of existing DHTs.

The aim of the atomic ring maintenance is to ensure correctness of lookups in the presence of
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nodes joining and leaving. In essence, they serialize interfering joins and leaves, i.e. they are done

sequentially, rather than concurrently, to avoid inconsistencies.

The main idea behind this is to modify atomically predecessor and successor pointers to take

note of the new joined or left node. Therefore, a locking technique is introduced. Basically,

each node holds a lock which has to be acquired in order to update predecessor or successor

pointers. This way, a leaving node should acquire its own lock and the locks of its successor and

predecessor. After acquiring all of them it can perform the corresponding updates to maintain

the ring consistent. By the other way, a joining node should acquire the lock of the node which

performs its insertion and the lock of its future predecessor. The complete algorithms and safety

conditions can be found in [41].

3.3.2 Token based root authorization

This technique [47] is based on designating authorized roots in such a way that there is never more

than one authorized root for a particular key. Therefore, its objetive is to achieve key consistency

by allowing only one owner for the authorization token. The algorithms are based on DHTs based

on ring structure such as Chord or Pastry.

The main idea is to have a single logical bootstrapping node which is the responsible to initiate

the authorization algorithm. This node is stable in the sense that it is considered by the algorithm

as a persitent service (always available).

This node begins as a responsible of the entire identifier space, therefore is designated as the

authorized root for every key (owns each of the tokens). Every time a node joins, this bootstrapping

node is responsible to transfer the tokens belonging to the range that the joining node is now

responsible for. This algorithm is repeated to adapt to changes in the DHT. Nevertheless this

approach is impractical due to the overhead in the bootstrapping node.

One refinement to the previous algorithm is to delegate the transfer of tokens to the owner of those

tokens. In other words, a joining node which will be the new responsible for a certain range of keys

will contact the current responsible of this interval instead of contacting the bootstrapping node.

Despite the improvement reducing the load of the bootstrapping node, this new approach needs

to make a round of authorizations to avoid non-availability of authorized nodes due to failures.

Therefore, every certain period the bootstrapping node initiates a round of the authorization phase

broadcasting a message to all the nodes conforming the ring. This way, failed nodes will release

its tokens and they will be assigned to the new responsibles.

The concret algorithms can be found in the cited article but they are quite complex and have hard
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constraints. Specifically, they have hard timing contraints assuming that clocks of different nodes

advance at exactly the same speed in order to demonstrate their algorithm’s safety property. This

constraint have been demonstrated as impractical when dealing with distributed systems [46].

3.3.3 Etna: consensus over DHT

Etna [48] is an algorithm for atomic reads and writes of replicated mutable data stored in DHTs.

Therefore, its aim is to maintain a consistent view of data items in the face of dynamic environ-

ments such as nodes joining and leaving.

Etna is developed on top of Chord to organize a set of cooperating nodes in an overlay network. It

is important to note that Etna does not rely on Chord to consistently identify which are the set of

nodes which are the closest successors on a object key. In other words, Etna assumes that the set

of nodes returned by Chord might be inconsistent so the queries to that nodes might return stalled

data.

Etna is based on a primary backup scheme to replicate objects in which the primary replica is the

current responsible for an object key and the f − 1 backup replicas are its closest f − 1 successors

(where f is the replica factor). As explained in Section 2.3.2, the replica set is dynamic in the

sense that nodes can join or leave the replica set at arbitrary times. Thus, Etna tries to determine a

total-ordering of different group configurations during the life-time of the system. Etna serializes

all read and write operations to an item through the primary backup in order to achieve a total

order on the operations.

The idea behind Etna is to distinguish two kinds of situations: under normal operation and during

a reconfiguration:

Normal operation mode : normal operation is defined as the situa tion where the replica set of

nodes is stable. In other words, while the replica set have the same replica nodes. Assuming

that the read and write protocol are similar it will be explained only the read protocol: a

node p wants to perform a query of the key k. p contacts the current responsible for the

k which is r0. r0 asks every member of the replica set r f for the value related to k. If r0

collects more than f−1
2 positive acks, it returns its own stored copy of the object as a quorum

has been reached.

Reconfiguration mode : a stable replica set is called a configuration. A configuration has the

members of the replica set and the values associated to that replica set. When the replica set

membership changes (actually, each time a node joins or leaves the overlay network some

replica sets must be changed) a new configuration must be reassembled in order to maintain
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consistent results. Etna uses the agreement protocol of the Paxos [45] distributed consensus

protocol to decide the next configuration. It guarantees that only one value is chosen at most

and thus, the replica group will reach a consistent view of the values they are responsible

for.

Despite the guarantee provided by Etna, it has a high performance cost in normal operation and

during a reconfiguration. During normal operation, 2( f + 1) messages will be sent for a single

read or write procedure. Moreover, each time a node joins or leaves the network, at least f group

memberships change (thus f reconfiguration procedures should be preformed) as, by definition of

the replica set membership, each node belongs to the successor lists of its f predecessors. This

situation drives to a high message complexity consisting of two and a half round (due to the Paxos

algorithm). Every round consists of 2( f − 1) messages and so a total message complexity of

5( f − 1) messages. Therefore, the joining and leaving procedures of the DHT becomes a high

cost algorithm in Etna. Another solution based on Paxos is [49], although it uses Pastry as its

underlying overlay network.

3.3.4 Atlas P2P Architecture (APPA)

APPA [50] is a complete architecture for developing complete distributed applications in a fully

p2p way. Its main purpose is to hide the underlying p2p infrastructure (namely structured or

unstructured overlay networks) to the application. This way, one of its layers is the P2P networks

which provides network independence with services that are common to different P2P networks.

Two of these services play an important role as much as data consistency is concerned:

Key based storage and retrieval (KSR) : stores and retrieves an item in the p2p network, i.e

through hashing over all peers in DHT networks or using super-peers in unstructured over-

lays. To maintain high available data, it uses the identifier replication scheme based on

multiple hash functions as explained in Section 2.3.2.

Key based timestamping (KTS) : generates monotonically increasing timestamps which are used

for ordering the events occurred in the P2P system. Each responsible for a given key main-

tains a local counter of the last timestamp generated for that key.

So the KS R makes use of the KTS to order update events and therefore it retrieves the latest stored

data. In essence, the KS R service provides two basic functionalities. The insert functionality

stores the corresponding data to an associated identifier. It makes use of the KTS to generate

a new timestamp. Then, for each peer which stores a replica of the identifier, it stores the data

with the given timestamp. Once the replica receives the item, it compares the stored timestamp
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and the received timestamp. If the inserted item is newer, the older one is replaced. The retrieve

functionality queries for the most up-to-date data stored, or in other words, the data with the

highest associated timestamp. First, the node willing to retrieve an item asks the KTS for the

latest timestamp generated. Thereafter, it asks each peer holding a replica for the item. If the

timestamp of the retrieved element is equal to the one returned by KTS , it means that it is a

current replica and is returned as the ouptut of the query. Otherwise, if no replica is up-to-date it

returns the item with the highest timestamp.

The main advantage of this proposal is its inherent extensibility as no properties about the un-

derlying overlay network are assumed. By the other way, it has a high overhead related when

maintaining up-to-date data due to the queries done to the KTS each time a node performs a

lookup for an item. Basically, the cost in messages for a retrieve operation is 2( f + 1) assuming

each item is replicated f times (two messages for retrieving the latest timestamp from the KTS

and two messages for each replica to retrieve its latest data).

Consistency Focus Performance

Read Write Maintenance

Atomic Ring Maintenance key - - θ(1)

Token based authorization key - - θ(log(N))

Etna data 2( f + 1) 2( f + 1) 5( f − 1)

Atlas data 2( f + 1) 2( f + 1) no mechanism

Table 3.1: Comparison of DHT Consistency mechanisms. They are compared in a qualitative way according
the properties introduced in previous sections and in a quantitative way according the number of messages
necessary. f is the replication factor of the system.
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Mutual Exclusion in DHTs

4.1 Introduction

One of the fundamental primitives to implement more generic systems and applications on top of

DHTs is mutual exclusion.

Distributed Mutual Exclusion is a problem that manages the access to a single, indivisible shared

resource by at most one process at any time in a distributed environment. In the case of DHTs, the

shared resource is each data item stored in DHT and the process is each node in the DHT willing to

access the data stored under a given key. These terms will be used indiferently along this chapter.

Although distributed mutual exclusion is an extensiviely studied area [51][52], this chapter focuses

on dynamic peer-to-peer systems and, more concretely, on structured overlay networks such as

DHTs. As it is a very well known problem, it only will be shown their desired properties on

Section 4.2, a simple cathegorization of different proposed distributed mutual exclusion algorithms

on Section 4.3 and finally, in Section 4.4, a survey of the only two specific algorithms for mutual

exclusion, at our knowledge, developed on top of structured overlay networks.

4.2 Mutual Exclusion properties

In this section it is presented a list of properties and conditions which any mutual exclusion al-

gorithm should provide in order to demonstrate its correctness. Although the conditions used are

quite general and could be applied to other scenarios, they will be related to the mutual exclusion

problem.
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Safety : i.e nothing bad ever happens is a necessary condition and is defined in terms of the

mutual exclusion confition. It asserts that at most one process may execute in the critical

section at a time.

Liveness : i.e something good eventually happens is defined in terms of the deadlock freedom

condition. It asserts that a process requesting to enter into a critical section is eventually

granted it, as long as any process executing in the critical section eventually leaves it. In

other words, no process will be denied to enter its critical section forever (no-starvation).

Fairness : It is a refinement of the liveness property which states that each process has the a

similar chance to entry its critical zone to a certain degree. Depending on the degree of

flexibility of the algorithm several levels of fairness could be achieved. From more stronger

conditions such as FIFO in which each grant to enter the critial section is delivered in the

same order as the requests were made) to less restrictive such as the linear wait in which no

process will enter its critical section twice while another process is waiting.

4.3 Classification of Distributed Mutual Exclusion algorithms

Mutual exclusion can be seen as a sort of consistency mechanisms as long as enable nodes to coor-

dinate their activities in order to prevent incoherent behaviour of their operations. If a collection of

processes share a resource or collection of resources, often mutual exclusion is required to prevent

interference and ensure consistency when accessing those resources. This is the so called critical

section problem.

In [53], the author argues that despite lots of distributed algorithms have been proposed, only few

of them were very innovative, proposing new ideas or new algorithmic techniques. Therefore, two

simple ideas drove the construction of any existing algorithm:

Permission-based algorithms : when a process wants to enter into the critical section, it per-

forms a request to the responsible set of granting the access to the critical section for them

to give the permission to enter. Then , it waits until these permissions have arrived. If a pro-

cess is not interested by the critical section it sends back its permission as soon as it receives

the requests. If it is interested, a priority has to be established between the two conflicting

requests.

The group of processes through which the node is willing to enter the critical section may

have arbitrarily configuration. In that sense, each algorithm propose its own configuration

depending on the concrete necessities of the system deployed based on the algorithm.
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The safety property is ensured by obtaining a sufficient number of permissions of the pro-

cesses belonging to the responsible set and the liveness property is ensured by totally order-

ing the requests, usually associating a timestamp to each one.

Token based algorithms : as, by definition, only one process at a time can enter the crticial

section, the right to enter is materialized by a special object which is unique in the whole

system, namely a token.

The safety property is ensured as long as the token is unique in the system. To ensure the

liveness property the algorithm must manage the movement of this token from one node to

another in order each request to acces into the critical zone be granted.

To manage such a movement, two basic schemes have been proposed. The perpetuum

mobile allows the token to travel from one node to another to give them the right to enter

into the critical section. Arbitrarily network topology is allowed and it only has to ensure

that the token reaches every node along the life-time of the system. In the token asking

scheme, the token does not move itself. Instead, a process willing to enter into the critical

section asks for it and waits until the token arrives.

There is a special case when a central coordinator, statically defined, is the responsible to grant the

access to processes performing requests to enter into the critical section. This unique permission

can be understood as a token managed by this coordinator.

4.4 Survey and comparison

In this section it will be presented a survey of differents mechanisms to provide mutual exclusion

over structured overlay networks. Each algorithm is breifly explained and surveyed in terms of

the system model (requirements from the underlying overlay infrastructure), the requirements for

solving the mutual exclusion and the simple classification presented in previous section.

Moreover, a performance comparison (see Table 4.1) is made in order to clarify the complexity of

providing mutual exclusion in such dynamic environment. The performance comparison is made

in terms of message complexity entering and leaving a critical section, delay in terms of message

before entering a critial section and its related problems.

4.4.1 Sigma algorithm

The algorithm presented in [54] solves mutual exclusion problem in structured overlay networks

where the set of processes may be large, dynamically changing and where processes may crash.
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They consider a dynamic structured overlay network where each node might act as a client (which

performs the request to enter into the critical section) or a server (which helps to coordinate the

client accesses to the critical sections). Nodes can join at any time and servers may crash. They

consider that after a server crash, it suffers a complete memory loss and restarts itself from its

initial state. Thus, its main purpose is to address the mutual exclusion in the pressence of process

crashes and memory losses.

They map each resource likely to be acquired in mutual exclusion to an identifier in the identifier

space of a structured overlay network. Each resource has its own set of replicas responsible to

grant the mutual exclusion.

Basically, when a client wants to enter into a critical section, it sends a request message to all

replicas. Moreover, each replica maintains a queue with the received requests. Each request has

an order id which is its possition in the queue. The replica replies to a request message with a

response message containing its possition in the queue.

Therefore, the client will be granted exclusive access to the resource if and only if has a majority of

responses granting the first position in the queue. The main problem here is the scenario in which

the resource is under high contention because each replica will receive the request in different

order. Thus, it might be difficult for the client to get a quorum granting its exclusive access as the

first in the queue.

To overcome this problem, once the client receives every response and has no access to the re-

source, it sends a yield message. This message is received by every replica and the effect is

removing the request from the queue and reinserting it. The function of the yield message is

to reshuffle the queue, so it offers a chance to the replicas to build a consistent view and grant

exclusive access to a single request.

The Sigma algorithms does not ensure 100% correctnes due to failure. So they rely on the fact that

the safety condition is violated with a very low probability. The ensure liveness due to the use of

failure detectors and a lease for the clients in order to avoid a client holding a critical section for

ever. The algorithm is developed in order to provide a FIFO policy granting the mutual exclusion.

Even so, the different order of the messages arrived at replicas and the reshufling of the request

queue make difficult to assure this fairness policy.

4.4.2 End-to-End and Non End-to-End protocols

In [55] it is proposed two protocols that combine token and permission based approaches to pro-

vide efficient and reliable access to shared resources in dynamic p2p systems.
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They model their system as a general structured overlay network where the basic entites in the

system are called nodes (or peers), and each virtual resource corresponds to a set of nodes (i.e

replicas), where the replicas for a resource are always available but their internal states may be

randomly reset due to failures and where nodes communicate via messages across unreliable chan-

nels. Its main purpose is to distribute evenly the burden of controlling access to the critical section

reducing the overall message overhead.

Both protocols share similarities with the Sigma protocol in terms of the messages sent across the

network. Despite that, the treatment of those messages are totally different due to the leverage to

some extent of the end-to-end argument exposed in [56], that’s why their names.

End-to-End Protocol : the idea is to maintain the queue of requests to enter the critical section

at the node that is currently in this critical section instead of at the replicas. It makes use

of a quorum set which is defined as the path from the node holding the mutual exclusion

to each of the nodes conforming the replica set. Thus, there are as many quorum sets as

replica nodes for a resource. If another node wants exclusive access to a resource, it sends

a request message to each one of the replica nodes. The algorithm makes the assumption

that this request will be held by any of the quorum nodes before reaching the resource so

the number of messages routed to the shared resources are diminished. Once the request

is held by any of the quorum nodes, they forward the message to the node currently in the

critical zone which enqueue the request. To acquire the resource in mutual exclusion it has

to receive a majority of response messages from the replica set or a token message from the

current holder of the resource in mutual exclusion. This token message carries the list of

queued requests at the the time of releasing the resource.

Non End-to-End Protocol : the idea is to maintain a partial queue of requests at all the nodes

in the quorum set rather than a complete queue at the critical section owner. This way,

the request messages are sent to the replicas and handled by any of the quorum sets which

enqueue the message itself instead of forwarding it to the current node in the critical section.

Nevertheless, once a node exits the critical section, the quorum sets have to consolidate the

different queues of each quorum node in order to decide which node will be the next to

access into the critical zone.

They do not provide any guarantee in terms of the properties defined in previous sections. More-

over, this solution suffers the same problem of Sigma protocol due to the reshuffling of queues

during periods of high contention.
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Classification Performance Advantages Drawbacks

Sigma Permission
based

2k No mechanism
necessary after
failures

No FIFO policy, low perfor-
mance under contention

End-to-End Permission
based

2k FIFO policy Low performance under
contention

Non
End-to-End

Permission
based

2k No single point
of failure

No FIFO policy, mechanism
needed to reconstruct the
waiting queue after failure

Table 4.1: Comparison of Mutual Exclusion over DHTs: k is the number of replicas which manage the
access to the shared resource. The number 2 is due to the necessity of a reply, thus the messages sent are k
requests and k grants. Thus, performance is measured in terms of messages needed
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Part II

The Currency Management System

Throughout this part, we will present the decisions taken to develop our system

based upon previously surveyed work. Thus, Chapter 5 presents an overview

of the system as well as definitions in terms of the taxonomies presented pre-

viously. The fundamental requirements based upon decisions taken within

Grid4All are introduced in Chapter 6. Details on the design and implemen-

tation of the system is explained in Chapter 8, followed by tests and experi-

ments to characterize it in Chapter 9. Finally, Chapter 10 exposes the project

plan and economical evaluation and 11 presents future work and conclusions

summarizing each of the contributions made in this master thesis





Chapter 5

General Overview

This chapter defines the currency management used within Grid4All in terms of the concepts

explained Chapter 1. It is a simple introduction to the idea on top of which the CMS (and therefore

the prototype which is going to be implemented) is designed and developed. They can be seen as

general ideas and first decisions taken within Grid4All to reduce the wide range of currency system

implementations presented previously.

Although most of the decisions have been taken in the context of the Grid4All European project,

the prototype might be applied in any scenario where a distributed banking service is necessary to

manage user accounts in order to manage user resource provision and consumption.

Regarding Grid4All, there will be a unique virtual currency (at first called g-currency) which

will serve as a medium of exchange between all trading agents (buyers and sellers). In the context

of Grid4All where there will be a common global market in a single instance, we consider as

a good choice implementing a single universal currency managed by the currency system of the

Grid4All instance. This assumption simplifies currency management and does not imply any loss

of functionality. Moreover, it improves the applicability of the currency overcoming the problem

of trying to find some other agent with the same currency with which trade.

It should be noted that every Grid4All instance (with its own components) will have its own

currency and therefore it will be impossible to transfer funds directly from one currency of one

Grid4All instance to another instance. This should be done by means of exchanging to real money

in order to buy g-currency in other instances. A unique currency will simplify as well as increase

the number of users willing to trade with this currency.

For simplicity, efficiency and for security reasons it would be better to implement the currency as

an account balance based system. It means that there will be a trusted entity which manages user
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accounts and every transaction should use this trusted service in order to carry out the transaction.

So there will be a central service in every Grid4All market place responsible for minting and

selling specific g-currency for the market place. The alternative of deploying a token-based system

was discarded due to the overhead introduced to assure the authenticity of each token (which

implies, generally, checking the correctness of a digital signature).

User accounts will be kept in a central banking service. The word central should be understood

as administratively centralized. That is, this banking service is a trusted service managed by

the Grid4All infrastructure. Despite there is a central logical service which provide g-currency

withdraw and deposit operations (currency management), maybe this service should be distributed

upon some nodes. The first approach taken for Grid4All will be to organize this service in a DHT

(Distributed Hash Table) in a way that each node is responsible for a bunch of accounts. This

way, we could achieve load balancing between nodes and make this service fault-tolerant, reliable,

dependable, etc. All nodes forming the central service should be considered trusted. So we can

classify g-currency storage as a remote distributed storage.

This banking service will be the responsible to store a log with the different transactions in order

to solve disputes between traders. The resolution of disputes might not be done automatically and

might need a third entity capable to solve them.

As long as we consider a banking service which manages user accounts within Grid4All, we can

classify the transaction protocols which will be used as on-line payment protocols. This way we

can assure a certain degree of confidence at the time of transaction checking the account balance

before carrying out the transaction. So we can identify users that try to cheat before the transaction

is accepted.

Finally, the Grid4All banking service will provide a general enough API in order to allow different

kind of transaction orders as for example pay before, during or after use.
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Chapter 6

System requirements analysis and
specification

Throughout this chapter, we present the first stage for the development of the system: the require-

ment analysis and its specification. In other words, we present the requirements which the final

version of the system resultant from this master thesis must acomplish as well as a first specifica-

tion of the functionalities provided.

As we have presented in Section , the Currency Management System (CMS) will deploy a dis-

tributed banking service where users are able to transfer virtual currency from its own account

to one another. The reader should note that the users of the CMS are the clients and providers

which trade in the market infraestructure of Grid4All. As long as all market related operations in

Grid4All are done in the scope of VOs, (Virtual Organization) both client VO and provider VO

are actually the users of the CMS.

Section 6.1 introduces both user and system requirements as well as outlines the requirements

from the infraestructure which will be used for the development of the prototype. Section 6.2

exposes a simple specification of the actors involved in the uses cases (the latter specified in an

API way).

6.1 System requirements

We have divided this section in user and system requirements. We consider user requirements are

those which describes the system from the point of view of the user. On the other hand, system

requirements are those in terms of the system itself ranging from functional to non-functional
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requirements.

6.1.1 User requirements

Defining basic user requirements will help us to define the systems requirements which will serve

as a guide for the architectural and design decisions. So the Grid4All’s banking service:

[1] Must be high available. It is an essential service for market related operations. Therefore,

the service must be operative every time a user wants to carry out a transaction.

[2] Must provide basic banking mechanisms. It is important to maintain the interfaces of the

banking service as simple as possible for the sake of ease of use.

• Basic account management: open, close and query accounts.

• Basic transactions: transfer funds and reserve funds.

[3] Must support different kind of payment methods. Different acquisition of Grid goods

might require different payment methods as explained in Section 1.6. Thus, the system

should provide different payment protocols to cover each kind of Grid good transaction.

[4] Must provide a certain degree of security to users. It is important that a banking ser-

vice would be secure enough to avoid misbehaviour of both clients and providers. More

concretely:

a user SHOULD be able to:

[4.1] have an identity inside the system that identifies itself uniquely.

[4.2] demonstrate that a transaction has been finished correctly.

[4.3] reclaim any unsatisfactory transaction. The definitive solution to the dispute will

be solved by an entity trusted by both traders. An unsatisfactory transaction arises

when a supplier does not receive a payment for a service provided to a client or

when a client receive an invoice of a payment done for a service it has not asked

for.

a user SHOULD NOT be able to:

[4.4] change the balance (currency units) stored in any account arbitrarily.

[4.5] initiate whatever banking transaction on behalf of another user if it has not the

correct rights to carry out it.

Optionally, the user would ask for other requirements not fulfilled by this master thesis as long as

final decisions are to be taken during the next year of Grid4All European Project.
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[5] Must be accessed by means of standard mechanisms. As long as the Grid is required

to use standard mechanisms to stablish communications between different components, the

banking service should provide standard communication interfaces to enable users to use

this service by means of standard mechanisms such as WSRF or future standards.

6.1.2 System requirements

Once outlined user requirements for the banking service, we describe more precisely the require-

ments of the CMS banking service upon previously introduced user requirements. We have divided

system requirements in functional and non-functional requirements. Functional requirements are

associated with specific functions, tasks or behaviours the system must support. Non-functional

requirements are constraints on various attributes of these functions or tasks. Usually contraints

about efficiency or robustness not directly related on the functionality provided by the system.

6.1.2.1 Functional requirements

We consider functional requirements as statements of services the system should provide and how

the system should behave in particular situations. Most of the concepts used here were intro-

duced in Chapter 1. At the end of each requirements, there is a list between brackets of the user

requirements related:

[6] Must provide a simple but extensible API to work with {2,3}. Extracting the basic func-

tionalities of a banking service facilitates the implementation of further protocols on top of

these basic functionalities, providing a layer architecture which makes a system more ex-

tensible. Moreover, it makes easy for the user of the banking service to interoperate with

it.

Developing a simple API fulfill the first requirement while enabling the second requirement

to be fulfilled. In other words, despite that simple methods will be provided (such as pay be-

fore, during and after use) at first, the interface should be extensible enough to support other

protocols introduced later in the development cycle (such as subscription to an account).

[7] Must support logging of transactions during a reclamation period {4}. The system must

log every transaction made in each account ensuring the persistance of that log during a

certain period of time during which it is possible for users ask for resolving a dispute or

conflict.

[8] Must manage consistently concurrent transactions against the same accounts{2}. At

any time, users should be able to carry out any request to the banking service and it must
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reply with a consistent response depending on past transactions. Thus, concurrent requests

to the same account must be handled in a seamless isolated way.

[9] Must protect users against misbehaving of other users {4}. Once a payment is made, a

non-repudiable proof is sent to both client and provider in order to enable future reclama-

tions (such as the invoices in the real world). Moreover, should provide mechanisms for

both actors such as:

A provider could inquire a user to send its total balance amount by means of a non-

repudiable mechanism before accepting a transaction. This protects the provider from

a debit client.

Once a payment is made, the provider has a non-repudiable proof (i.e electronic invoice)

in order to demonstrate that it has provided a requested service and has been payed for

it. If a consumer tries to claim that a payment has been made when it has not indeed,

the provider can win the dispute presenting this proof.

Once a payment is made, the client has a non-repudiable proof (i.e elctronic invoice) in

order to demonstrate that it has made a payment. If a provider claims that a payment

has not been made when it has indeed, the client can win the dispute presenting this

proof.

Should provide non-repudiable operations in order to detect or protect users against over-

spending, counterfeiting, etc.

6.1.2.2 Non-functional requirements

We consider non-functional requirements as constraints on the services or functions offered by the

system such as development process constraints, design constraints as well as functionalities that

must be incorporated to the infrastructure in order to fulfill user requirements. Thus:

[10] Must be dependable {1}. That is, the system must be operative at any time independently

of network conditions and host’s load. Therefore the design should take into account the

replicated nature of fault-tolerant services.

[11] The system must support ACID1 transactions{8}. In order to avoid inconsistent account

balances and reply with consistent results to user requests, the system must carry out opera-

tions with ACID semantics. Moreover, transactions such as transferFunds must modify two

accounts or any one at all in an atomic way.

1Atomicity, Consistency,Isolation,Durability
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[12] The external interface must be interchangeable by future components {5}. Despite

there is no standards defined to access Grid4All infraestructure services, the system must

be designed with interoperatibility, extensibility and exchangeability in mind to enable fu-

ture access methods decisions (in terms of WSRF, WS [57], Fractal [58] or ProActive[59]

development paradigms, etc.)

6.1.3 Infrastructure requirements

Relaying in the user and system requirements, we specify what components, mechanisms or ca-

pabilities the infraestructure should provide in order to achieve the desired requirements. By

infrastructure, we consider the mechanisms not directly related with the CMS components and,

therefore, provided by other components external to the CMS. Thus:

[13] Security Infrastructure.

Must provide a way to identify each system user uniquely.

Must provide a mechanism to authenticate each message in such a way that the message

can not be forged or falsified and can not be changed without noticing it.

Must provide a mechanism to demonstrate that a message has been sent by a concret user

without ambiguities. Moreover, other users must be able to bound a message with and

identity.

Must provide a mechanism to authenticate and authorize users to carry out operations they

have rights to carry out and deny those they have not.

[14] Storage infrastructure. Must provide a distributed storage mechanism with replication

techniques to achieve a certain degree of fault-tolerance.

Later chapters will stretch out more information regarding the storage infrastructure. Regarding

security requirements, they can be fulfilled by means of a PKI component which provide mecha-

nisms to authenticate messages such as cyphering or message signature. They will not be treated

throughout the rest of the document as long as the introduction of such security enhances will be

a matter of future work.
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6.2 System specification

6.2.1 Actors

In this section we specify the actors which interoperate with the CMS components. These actors

represents different roles inside the system so each user is not bounded to a concret actor. Instead,

each user can act as different actors(i.e. a provider might act as a client when using resources from

another provider VO).

As it is shown in Figure 6.1 the different actors involved in the CMS operations are:

Grid4All user . It is the general identity within Grid4All (or whatever scenario the CMS is

deployed). This identity contains a uniquely identification which distinguishes each user

from each other. For example, each Grid4All user may own a public/private key pair in

order to authenticate itself against the rest of users.

CMS Admin . This user is responsible to resolve disputes or conflicts referring user pay-

ments and restore the correct balances in case of missbehaving of users or inconsis-

tencies. It is not a regular Grid4All user as long as its credentials allow it to change

arbitrarily the balances of users.

CMS User . They are the users which interoperate with the main operations of the CMS.

Thus, each CMS User will own an account created in order to do or receive a payment.

Client VO . It is the user which initiates the CMS transactions. In other words, the

client is responsible to carry out a payment for resources consumed inside its VO.

Provider VO . It is the user which receives credits to fund its account. In other words,

the provider is the CMS User which receives payments on behalf of its VO.

CMS System . This actor represents the CMS component of the Grid4All infrastructure. It is

involved in every operation as long as is the responsible to manage the account balances. As

we will see in later sections, this actor will enclose different roles inside the CMS component

as long as the CMS is a distributed infrastructure.

6.2.2 API Specification

The use cases will be explained in terms of the external API which will be accessed by the actors

of the system. Each method corresponds to an use case and is presented in terms of its parameters

and which responsabilities have each actor. The actor in italics is the initiator of the use case.
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Figure 6.1: Both Client and Provider are Grid4All users. Client will be the responsible to initiate the
payment mechanism by transfering funds to its provider

So far, data types used throughout the API specification have not concrete attributes or opera-

tions. We introduce them now to clarify the operation signature and the data related with each

transaction.

Receipt. Each operation returns a receipt. This receipts will contain information according the

result of the operation made. Moreover each receipt will contain security related information

which will enable users to present it as a proof of a finished operation.

Account. Each user registered within the CMS, will own a unique account containing its identity,

its balance, and the history of operations made by its user.

AccountID. Each Account will be bounded to a unique identifier AccountID. This AccountID

might be arbitrarily assigned or be bounded to the identity of the user owning the account.

Credentials. This type represents the rights of a user to carry out certain transactions. These

Credentials are bounded to the user identity within the system.
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Table 6.1: Banking Service API Specification

openAccount

Description Creates a new account and relates it with the given credentials. The user

is responsible to present right credentials to the banking service and the

system is responsible to bound the credentials to the AccountID assigned.

For the sake of simplicity, each user will have only one account associated.

Actors CMS User, CMS System

Input Credentials: unique identification within the system of the user willing to

carry out the operation.

Output OpenAccountReceipt: receipt specifying the ID assigned to the user acount.

Exception AccountAlreadyCreated: the account has been previously created for the

given user

InvalidCredentials: the given credentials are not valid within the system

closeAccount

Description Closes and deletes the account given its AccountID and the user Creden-

tials. Depending on the system policies, the credits inside the account might

be lost or might be refunded to another account. The system is responsible

to check if the Credentials are assigned to the given account.

Actors CMS User, CMS System

Input Credentials user: unique identification within the system of the user willing

to carry out the operation.

AccountID id: id of the account to be deleted

Output CloseAccountReceipt: receipt containing the account deleted with the his-

tory of transactions.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

InvalidCredentials: the given credentials are not bounded to the account

trying to be deleted.
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queryAccount

Description Returns the associated account identified by the given AccountID and an

identity within the system.

Actors Grid4All User, CMS System

Input Credentials: uniquely identification within the system of the owner of the

account

AccountID: id of the account to be queried

Output AccountReceipt: receipt containing the account queried, including the bal-

ance and the history of transactions.

Exception AccountNotFound: the account does not exists within the system

InvalidCredentials: the given credentials are not bounded to the account

trying to be queried.

depositFunds

Description Increase the user account associated to the AccountID with the given cred-

its. This method will be only accesed by system administrators to deposit

funds due to any reason (i.e. user wins a dispute against a provider).

Actors CMS Admin, CMS System

Input Credentials: credentials of a system administration.

AccountID: id of the account to be increased.

int amount: amount of credits to fund the account balance.

Output DepositAccountReceipt: receipt containing the account increased, the rea-

son and the new balance.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

InvalidCredentials: the given credentials does not correspond to an autho-

rized user.
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withdraw

Description Decrease the user account associated to the AccountID with the given cred-

its. This method will be only accesed by sysops to withdraw funds due to

any reason (i.e. user loses a dispute against a provider).

Actors CMS Admin, CMS System

Input Credentials: credentials of a system administration.

AccountID: id of the account to be decreased.

int amount: amount of credits to withdraw from the account.

Output WithdrawAccountReceipt: receipt containing the account decreased, the

reason and the new balance.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

InvalidCredentials: receipt containing the account increased, the reason and

the new balance.

transferFunds

Description Transfer an amount of creadits (funds) from the source account to the desti-

nation account. This operation is atomic in the sense that both accounts are

modified or none at all.

Actors CMS Client, CMS System

Input AccountID source: id of the account to be decreased.

AccountID destination: id of the account to be increased.

int amount: amount of credits to be transfered.

Credentials: uniquely identification within the system of the user owning

the source account.

Output TransferReceipt: receipt demonstrating that the transfer has been correctly

finished.

Exception AccountNotFound: any of the accounts does not exists within the system.

InsufficientFunds: the source accounts has not sufficient funds to transfer to

the destination account.

InvalidCredentials: the given credentials are not bounded to the source ac-

count.
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reserveFunds

Description Allow the owner of an account to reserve the amount specified for a future

payment against the destination account. This operation does not imply a

real transfer of funds since the destination account is not modified. This

method assures that the reserved funds cannot be spent in another transac-

tion.

Actors CMS Client, CMS System

Input AccountID source: id of the account to reserve funds from.

AccountID destination: id of the account against which bound the reserva-

tion

int amount: amount of credits to be reserved

Credentials: uniquely identification within the system of the user owning

the source account

Output ReserveReceipt: receipt containing the amount reserved, the source, desti-

nation account involved and an identification of the reserve.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

InsufficientFunds: the source accounts has not sufficient funds to carry out

the reservation.

InvalidCredentials: the given credentials are not bounded to the source ac-

count.
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commitReservation

Description Finishes the reservation of funds transfering the reserved funds specified in

the ReserveReceipt to the provider’s account specified in the receipt.

Actors CMS User, CMS System

Input ReserveReceipt: receipt containing the necessary information to complete

the reservation.

Credentials: uniquely identification within the system of the user owning

the source account

Output TransferReceipt: receipt demonstrating that the transfer has been correctly

finished.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

ReservationNotFound: the receipt specifies a reservation transaction not ex-

isting in the source account.

InvalidCredentials: the given credentials are not bounded to the source ac-

count specified in the receipt.

cancelReservation

Description Cancels the reservation of funds made before due to some reason. Once the

reservation is cancelled the fund are again available for spending.

Actors CMS User, CMS System

Input ReserveReceipt: receipt containing the necessary information to complete

the reservation.

Credentials: uniquely identification within the system of the user owning

the source account

Output CancelPaymentReceipt: receipt containing the reservation cancelled.

Exception AccountNotFound: the account does not exists within the system (not cread

yet or already deleted)

InvalidCredentials: the given credentials are not bounded to the account

trying to be modified.
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6.3 System Model

Defining a system model and its associated failure model is usefull to determine the architecture as

well as the design of the components building the system. Relying on this system model, we can

identify different problems likely to ocurr and which operations are more frequently executed. So,

guaranteeing that the system model is not broken, the specifications and safety properties related

to the system are maintained.

We assume a dynamic, cooperating set of node in a totally asynchronous environment. Comunica-

tion links may be arbitrarily slow. Nodes can crash (fail-stop), join or leave the system at any time.

However, as long as the Currency Management System will be deployed on a relatively stable

overlay network, joins or leaves (i.e. due to maintenance) are more frequent than failures due to

stopping the node arbitrarily. So our system should provide good performance when peers join

and leave the system as well as provide guarantees when peers fail (despite the associated cost).

As we will show in Chapter 9, the probability of braking the safety properties of our system are

negligible2. As we will show, the probability of breaking the safety property of our system de-

creases exponentially as long as the number of replicas are increased. Therefore, choosing a

correct replica factor is important to provide certain guarantees.

2Negligible must be understood as the property by which the probability of breaking the correct behaviour of the
system is less or equal to the probability of breaking the system model
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System Architecture

Throughout this chapter, we present a general and abstract model of the Grid4All market place

architecture and, moreover, we define more concretely the different logical components of the

Payment module within which the Currency Management System is placed.

7.1 Grid4All Market Place Architecture

The document [60] defines the logical architecture of the Grid4All Market Place (a.k.a GRIMP)

where the generic components that are fundamental to implement market resource allocations

systems are identified. This logical view is presented to ensure that the architecture matches the

specific requirements that arise from the environment that Grid4All addresses: the allocation of

resources for dynamic, ad-hoc virtual organizations.

This architecture shown in Figure 7.1 is composed of different layers, each of which providing

mechanisms to other layers in order to fulfill their purposes:

Application Layer : this layer contains the end user applications such as virtul learning appli-

cations, simulation applications, etc. Applications are hosted within virtual organizations.

In other words, the applications execute within the environment provided by the virtual

organizations so as to satisfy the objectives of the VO.

Market Place Services Layer : this layer consists of concrete implementations of market proto-

cols and trading agents within the framework provided by the market infrastructure layers.

This layer also consists of market specific applications that may be developed using the

functionalities provided by lower layers.
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Figure 7.1: Grid4All Market Place (GRIMP) logical architecture.

Market Infrastructure Layer : this layer provides the basic functionalities to implement elec-

tronic market places. This layer also provides the framework that facilitates the development

of specific market mechanisms and algorithms.

Autonomic VO Management Layer : this layer provides the components based on an auto-

nomic framework to construct self-organizing virtual organizations. Also, it provides ca-

pabilities to organize resources used within the VO as well as provide resources to users

beloging to the VO on demand.

Infrastructure and services layer : this layer may provide generic infrastructure required to im-

plement large scale loosely-coupled and self organizing distributed systems, althought it is
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not specific to the GRIMP.

Fabric Layer : this layer provides connectivity, communication and low level discovery of re-

sources within the platform in order to fulfill the requirements of the upper layers.

The perspective of Grid4All is that of an open market place that provides the tools and services

to create spontaneous markets. Such markets are initiated by the participants (i.e providers, con-

sumers and also 3rd party mediators) on demand and when they are needed. Such markets are shot-

lived and will terminate when its objectives are achieved. This chois is motivated by the fact that

on unique persistent market for all Grid4All is infeasible (even if devided by resource/application

segments). Secondly, it is also infeasible to thinkof direct bilateral negotiations between providers

and consumers as the only alternative. Participants, much like eBay, should be allowed to create

market sessions encapsulating suitable rules on demand.

7.2 Payment Module logical view

Our system is encapsulated within the Market Place Services Layer, more concretely within the

payment module. Therefore, we present a general logical architecture view to illustrate the dif-

ferent components of the payment subsystem and how it is related to other layers. The logical

architecture of the payment module is general enough to match different requirements from differ-

ent scenarios, although we will focus on the Grid4All specific scenario.

Figure 7.2: Payment module logical architecture.

As presented in Figure 7.2, we have divided the payment module in four basic components:

VO Payment Mechanisms : this component provides different mechanisms to perform the pay-

ments due to a Grid4All transaction. These mechanisms may range from pay before use to
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subscription mechanisms (See Section 1.6.2). This component the external API to perform

those payments.

Virtual Banking Service : this component provides mechanisms to create or delete user accounts

and to relate it to a Grid4All User Identity.

Virtual Account Management : this component provides mechanisms to modify user accounts

when performing a transaction. Also, it provides certain guarantees (such as ACID proper-

ties) when modifying user accounts.

Currency Exchange : this component provides mechanisms to exchange real currency to virtual

currency and viceversa. This component may support a wide range of electronic payments

such as PayPal or direct Credit Card payments.

The scope of this project is to develope the Virtual Banking Service as well as the Virtual Ac-

count Management as long as these components would be generic enough to be applied in other

scenarios. The VO Payment Mechanisms as well as the Currency Exchange modules are system

dependant. In other words, they rely on the specific policies of the institutions deploying the

payment subsystem.

Regarding Grid4All, the VO Management Layer is the responsible to initiate the transaction of

transferring funds from the account of the VO to the account of the provider. This transfer of

funds will be performed by means of the mechanisms provided by the VO payment mechanisms.

7.3 Currency Management System Architecture

Throughout this section, we provide a general view of the CMS architecture. So far, the CMS

integrates the Virtual Banking Service and the Virtual Account Management components in a

distributed fashion, which deals to a high available fault-tolerant internet-scale service.

7.3.1 Deployment View

Regarding where the CMS will be deployed, we assume a cooperating set of nodes building the

whole Market Place. This Market Place might be based on the Autonomic Virtual Organization

Management Framework which provides communication primitives based on the Fabric Layer

(DHT based Peer-to-Peer Overlay). One of these primitives is the creation of different groups on

top of the former overlay. What it basically does is creating another overlay on top of the former

one by means of which the nodes can communicate independently of other groups.
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Figure 7.3: Currency Management System deployment view. The CMS Network is constructed upon some
nodes each of which is running the prototype of the CMS. Clients access the CMS functionalities through
any of the nodes through the external API.

This way, the CMS might be deployed upon a set of nodes of the Market Place. We envisage a

distributed high-available fault-tolerant system which is accessed by clients (i.e. Virtual Organiza-

tions) through any of the nodes of the CMS Group. This way, the failure of a node does not imply

the failure of the entire system but only the failure of a single node. The service may be accessed

through another node. Moreover, the possibility to access through any of the nodes implies load

balancing of user requests. (See Figure 7.3).

7.3.2 Component View

Once presented the general architecture of the CMS, we introduce the software architecture which

will guide the design of the prototype. As we have said, the CMS will be distributed upon some

nodes. This way, the basic component of the CMS will be the node which is part of the CMS

Group. The architecture of the CMS Node is based on a layered architecture isolating the respon-

sabilities of each one of the layers and providing stronger mechanisms in the upper layers in order

to fulfill the requirements of the CMS.

Figure 7.4 shows the layered architecture of the CMS Node. Each layer has its own limited re-

sponsabilities abstracting them to the rest of the layers. This architecture enables the system to

exchange whatever component without affecting the rest of the tiers.

CMS Gateway Interface Layer : its responsability is to provide a mechanism to export the ex-
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Figure 7.4: Currency Management System Component Architecture. The CMS follows a layered architec-
ture isolating different responsabilities in each layer.

ternal API of the lower layer (Banking Layer) to enable users to access its operations. This

layer may be provided by different mechanisms such as WebServices, WSRF [57], Fractal

[58] or simply by an internal protocol developed within the system (in the case of Grid4All,

it would be developed using the communication primitives provided by the Fabric Layer).

CMS Bank Service Layer : its responsability is to provide operations to perform to account cre-

ation and deletion as well as modifications to these accounts when performing, for example,

a transfer of funds. It relies on the guarantees supported by the lower layer (Transactional

Data Layer) to ensure the ACID properties of its operations.

Transactional Data Layer : its responsability is to provide mechanisms to perform ACID trans-

actions when modifying objects stored in the lower layer. To provide those semanthics, the

data will be accessed in mutual exclusion to avoid transaction inconsistencies (as explained

in Chapter 4). It relies on the guarantees supported by the lower layer (Mutable Consistent

Data Layer) to store and retrieve the objects.

Mutable Consistent Data Layer : its responsability is to provide a slightly modified DHT inter-

face to support the update operation as well. Moreover, it is responsible to deliver the most

up to date data stored with the semantics explained in Chapter 3. This Layer will be based

on the DHT Layer provided by the DKS peer-to-peer middleware as it will be explained in

later chapters.

KBR Layer : KBR stands for Key Based Routing. As its name suggests its responsability is to

provide mechanisms to communicate different nodes based on their key interval responsabil-

ity (See Chapter 2). We will use the KBR Layer provided by the DKS middleware without

any modification. As long as DKS uses a standard KBR API, this layer would be replaced

by any other middleware providing this kind of routing mechanisms.

This layered architecture enables us to exchange whatever component in the future. Chapter 8
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presents a concrete view on the protocols and design decisions to achieve the responsabilities of

each layer.

7.3.3 Roles

The last issue regarding architecture is the roles which can be exerted by each one of the nodes.

Based on the ideas presented in Part I we can identify three different roles in our system. These

roles may be optional (not every node in the system should exert this role) or mandatory, and will

serve as a basis to describe protocols and algorithms in later chatpers:

Gateway Node : also called Entry Node. Is the responsible to process the petition of a client by

means of the Gateway Interface Layer. It is a simple gateway between the world and the

nodes inside the CMS Network. It is the only one way to access the external API of the

CMS. This role is optional as long as not every node is required to act as a gateway. Despite

that, the more gateways the more distributed is the load of processing client requests.

Responsible Node : As long as the CMS is based on a DHT, each node will be the responsible to

perform any operation against an object with an identifier inside its responsability. This role

is mandatory as long as the KBR routes the messages to the responsible node of a certain

identifier.

Replica Node : To carry out a fault-tolerant system is necessary to do some kind of replication.

In our case, what is beeing replicated are the objects stored in the Mutable Consistent Data

Layer. The number of replica nodes will depend on the replica factor of the system. This

role is mandatory as to produce a fault-tolrerant service is necessary the cooperation of each

node to equally balance the replication load.
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Design and Implementation

Throughout this chapter, we introduce the layered architecture within the CMS as well as the

algorithms and protocols designed in order to build a distributed banking service.

Figure 8.1 shows a more precise view of the components building each layer. Following a bottom-

up introduction of the elements provided by each layer will ease the understanding and explanation

of the different solutions presented in upper layers (although the design process was top-down).

Each component belonging to each layer will be presented in subsequent Sections 8.1, 8.2, 8.3

and 8.4. Implementation details of common components or specific features will be introduced in

Section 8.5.

8.1 Key Based Routing Layer

This layer provides basic mechanisms to manage a structured overlay networks. Its main respon-

sability is to manage the overlay node or peer and its connections with the rest of its neighbours.

More concretely, the main functions implemented in this layer are:

Provide mechanisms to manage network connections : it abstracts the upper layers from the

complexity of having to control multiple connections with multiple peers.

Provide mechanisms to manage the overlay : it provides operations to join or leave an overlay

as well as to detect failed peers in order to reconstruct its routing table and inform upper

layers to fix their state.

Provide basic communication primitives : it provides a simple API to send messages in a syn-
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Figure 8.1: Currency Management System layered view.

chronous or asynchronous way as well as broadcast a message to the responsible for a given

identifier.

This layer will be the KBR Layer of the DKS peer-to-peer middleware. This decision was made in

terms of the properties provided by this middleware, basically the Atomic Ring Maintenance and,

therefore, its key consistency property (See Section 3.3 and Section 2.4.3). Due to this property,

harder assumptions can be made to this layer in order to ease the construction of consistency

semantics implemented in the upper layer.
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8.1.1 Key Based Routing API

Figure 8.2 shows a sketch idea of the KBR API used by the upper layer. Throughout next subsec-

tions, each event will be introduced and a complete signature and functionality will be explained.

Figure 8.2: KBR Component Interface: lines to the upper layer are notifications of events in which the
Mutable Consistent Layer will be interested in order to reconfigure its state. The basic communication
primitives used are route a message, and broadcast a message to a set of nodes within the range introduced.

8.1.1.1 Event Notifications

As long as DKS differentiates between synchronous modification of the overlay (namely join and

leave) and asynchronous departures (namely failure), three different events are produced to inform

the DHT layer. Each event will produce different procedures to reconstruct the DHT layer:

joinCallback : a new node is joining the overlay and it will be its new predecessor.

leaveCallback : an existing node is going to leave the overlay and it was its former predecessor.

failCallback : the overlay node has detected that its predecessor has failed (does not respond to

heartbeat messages).

8.1.1.2 External invocations

The KBR Layer provides basic communication primitives and mechanism to manage the overlay.

Regarding communication primitives we will only explain those used by the upper layer. This way,

we decided to build our mechanisms on top of an asynchronous mechanisms as long as not every

KBR implementation support synchronous communications. Therefore, the two main operation

provided to the upper layer are:
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routeAsync : given a number of type long representing the identifier within the identifier space

and an object, this method routes the object to the responsible node for the given identifier.

Once the message is delivered to the network, the sender process is able to continue its

execution.

broadcastRestricted : given an interval (two longs representing the start and end of the interval)

and an object, sends the object to the nodes which has some reponsability on that interval

(may be more than one node). This method is used to recover an interval after a failure as

we will see in later sections.

Moreover, this layer provides basic primitives to manage the membership within the overlay.

Therefore, the two operation provided are:

join : given an existing node of a certain overlay, this method allows a node to enter the overlay

initializing the routing table and neighbour peer connections.

leave : this method allows a node to stop being part of the overlay in a synchronous way by

exchanging messages with its neighbours in order to reconstruct their routing tables and

maintain the overlay properties provided by the overlay. In the case of DKS, this method

ensures that the lookup consistency property is held. In other DHTs, this might not be true.

8.2 Mutable Consistent Layer

This layer provides basic mechanisms to deliver the DHT abstractions to the upper layer. In

other words, it provides an enhanced common DHT API [33] to fulfill the Transactional Layer

requirements and, more generally, the CMS requirements. It is based on the implementation of

the DHT layer of the DKS middleware.

As we have said in Chapter 2, most existing DHTs provide good support for immutable data

leading to no consistency guarantees. Due to the requirements of the Transactional Layer, our aim

is to provide a Mutable 1 DHT abstraction which will not return stale (also inconsistent 2) data

regardless of network conditions. Moreover, we modify the identifier representation to enable the

possibility of storing more than one value under the same id of the identifier space.

As we will show, we modify the semantics of the put operation to support Mutable Data by

replacing it with two new operations such as createObject and updateObject.

1data which can be modified instead of only put in the DHT
2Consistency is defined as the guarantee to get the latest data put in the DHT
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8.2.1 Mutable Consistent DHT API

A first scheme of the API is shown in Figure 8.3. This events will be used by the upper layer

(Transactional Layer) in order to build their primitives.Throughout next subsections, each event

will be introduced and a complete signature and functionality will be explained.

Figure 8.3: Mutable Consistent Component Interface: events sent to the upper layer are intervalJoin,
intervalLeave and message Arrived. Moreover, it offers basic enhanced DHT operations in order to support
consistent updating of objects.

8.2.1.1 Event Notifications

So far, the KBR Layer provided by DKS notifies the upper layer of the join, leave and failure of

nodes events. This way the DHT is able to reconfigure its state with the according mechanisms

explained previously.

Nevertheless, at the DHT Layer those events should be masked in order to isolate overlay related

events to the upper layers. Instead, we provide to the upper layer the event of joining a new

interval (due to leaving or failure of nodes) or leaving a part of the current interval responsability

(due to the join of a new node). This way, the upper layer is not aware of which events have been

arised but it is able to reconfigure its state by noticing the presence or absence of a new interval to

manage. So, the events generated to the upper layer are:

intervalJoin : this event is generated when a node leaves the overlay or has failed. This way, the

node receiving this event will be aware of the new interval it is responsible for.

intervalLeave : this event is generated when a new node joins the overlay. This way, the node

receiving this event will be aware of the interval it is no responsible to handle from now on.
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As we will see, in the Transactional Layer case, the LockAlive Manager component needs to know

which objects are beeing held in mutual exclusion to handle the LockAlive messages. If a new

node is responsible for a new interval, it must be aware of each new object state in order to initiate

a LockAlive mechanism in case the object is locked, or do nothing in case the object is free.

8.2.1.2 External Invocations

This is the first layer implemented by us to support the concrete necessities of the upper layers.

In Section 8.5, we will se how the message dispatcher component is implemented and, thus, show

how a synchronous communication is possible on top of the basic asynchronous communication

provided by DKS. This way, for communication purposes within this layer we provide:

routeAsync : it is, basically, a simple wrapper for the routeAsync method provided by the KBR

Layer. Despite being a wraper, we check if the message destination is the node itself. If

the message is for the node itself, the message is delivered directly to the corresponding

message handler as explained in Section 8.5. It is a simple modification made for efficiency

purposes.

route : as we will show in a later section, it is a method provided to wait for a response of a

message sent. In other words, once the message is delivered to the network, the thread waits

till a response for this message is received. Thereafter, the thread is able to continue with

its processing taking into account the reception of this response. This primitive allows us to

implement simpler methods as long as the the thread is kept waiting while the message is

being routed through the network.

As we will explain later, we consider that the route method always must receive a response. In

order to deal with failures, we have defined a timeout for each one of the messages. This way, if

a response for a message is not received after a certain amount of time, the message is resent as

long as the previous one might be lost.

Moreover, as we will describe extensively in Section 8.2.3, we provide a simple API representing

a DHT. We have enhanced the common API described in [33] to support more stronger semantics

such as:

createObject : given an Identifier and an Object, this methods allows us to bind the object to this

identifier within the DHT. If the identifier is in use this methods returns an exception. As

we will se, this object will be wrapped within another one to support consistency.
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deleteObject : given an Identifier, this method allows us to delete the object bounded to this

identifier.

updateObject : given an Identifier and an Object, the object formerly bounded to this identifier

is replaced by the new one passed by parameter.

queryObject : given an Identifier, this method returns the object bounded to this identifier. If the

identifier has no related object, it returns an exception.

8.2.2 Mutable Identifier Space

The basic DHT implementation of DKS enables clients to store more than one object under the

same identifier by successively invoking the put method. To retrieve one of the objects stored

under the same identifier, we must invoke a get method and retrieve every item stored previously

under a given identifier, leading to bad transmission performance. Moreover, if we store related

data (different items which has some point in common) under different identifiers could lead to

bad locallity performance due to data being stored in different nodes.

Therefore, we specify a new identifier assignment policy to objects in order to take profit of data

locallity and to index each single object stored under the same identifier (avoiding the retrieving

of irrelevant data).

To achieve this purpose, we define a 2-dimensional identifier space where the first coordinate is the

current DHT identifier space and the second coordinate is the position within the first coordinate.

In other words, we assign each object a Mutable Identifier which is constructed by two identifiers:

ResponsibleID : it is the ID of the node responsible to store that item.

ObjectID : it is the ID of the object within the ResponsibleID.

In other words, we propose storing items under the same ResponsibleID within a hashmap for

single indexing purposes (indexed by the ObjectID) instead of storing it within an array as DKS do.

Figure 8.4 shows the two different approaches taken by DKS and our Mutable Layer respectively.

With this new approach, elements stored inside a single ResponsibleID will remain together de-

spite the joining or leaving of nodes as long as the partition of the identifier space is at the re-

sponsibleID level. As we will see, this solution will allow the Transactional Layer to store always

under the same node the object stored and its associated state, enabling the efficient retrieving of

items.
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(a) DKS Identifier assignment (b) Mutable Identifier assignment

Figure 8.4: Figure 8.4(a) shows how DKS manages the get operation taking into account its own identifier
assignment. Figure 8.4(b) shows how our Mutable DHT Layer handles the identifier space enabling the
retrieving of a single object instead of a set.

8.2.3 Consistency Mechanism

As we have seen, retrieve consistent data in a dynamic asynchronous system is hard to achieve

when dealing with replicated data. Our aim is to retrieve always the most up-to-date item stored

in the DHT despite the joining, leaving or failure of nodes.

At the end of [41], the author introduces how consistency could be achieved using DKS and its

default replication mechanisms, namely Symmetric Replication. The idea presented is based on

retrieving every item from every replica node and select one of them by achieving consensus (the

selected item is the most repeated one). This approach, whilst effective, is less efficient in terms

of message cost than retrieving only one item, due to the message overhead introduced. Despite

that, this approach is consistent with the parallel put operation implemented by DKS.

We have based our solution on the DKS DHT layer by using its symmetric replication technique

for efficient join and leave operations and to maintain the lookup consistency property. Despite

that, the basic operations (namely put, get) are changed to meet our needs.

Assuming that each node n with identifier i has its predecessor with identifier j, our protocols are

based on maintaining a simple invariant which is as follows:

The node n with an interval responsability of ( j, i]

has the most up-to-date value associated v to each key k

where j < k ≤ i.
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Considering that there are no failures, no joins and no leaves, the invariant holds by serializing

every put and get operation through the responsible node for a given identifier. Notice that DKS

provides lookup consistency which assures that no more than one node will be responsible for a

single identifier. This way, each get operation will return always the last put performed.

The challenging issue of delivering consistency semantics is deal with replicated data as well

as dynamism. Therefore, we introduce the well known idea of timestamping to order different

updates which may arrive at replica nodes in different order.

Each object will have an associated timestamp which will be increased monotonically each time

an update is performed by the responsible node. This way, a replica will update its own item only

if the timestamp associated with the update is greater than the timestamp of the object it maintains.

Notice that there is a total order on the set of timestamps generated for the same key. However,

there is no total order on the timestamps generated for different keys. It is not a problem for

achieving consistency because each item is treated as a different entity.

First, we introduce the different protocols and algorithms to implement the three basic operations

of our enhanced DHT abstraction, namely createObject, updateObject and queryObject. For that

purpose, based on the replica placement introduced in Section 2.3.2 (more concretely the symmet-

ric replication approach), the replicated identifiers are defined as follows:

r(i, x) = (i + (x − 1) N
f ) mod N

where i is the identifier, N is the identifier space, f is the replication degree and x is the xth

replica within the range [1,f]. This formula matches the Figure 2.5 where different identifiers are

replicated along the identifier space of size 16 and replica factor of 4. For the rest of the document

we assume that exists a method associatedIdentifier(i,x) which given an identifier and a replica

number, it returns the replicated identifier for i taking into account the replica number.

Moreover, we assume that each node has an array of hashtables, where each one of the array index

(x) stores the replicated items associated with the nodes responsability (taking into account that

each identifier is replicated f times). Therefore, every nodes has the items which it is reponsi-

ble to store as the primary replica at index zero whereas the above formula returns the same id.

In the other hand, the rest of array indexes store the replicated items associated to the interval

responsability.

As we can see in Algorithm 8.1, the createObject message is processed firstly by the responsible

node of the identifier associated with the object going to be created. If the object was created, it

returns an exception which will be caught by the source of the operation. Otherwise, the object is

routed to the replicas responsible for each one of the associated identifier. Once created the muta-
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Algorithm 8.1: Create Object Algorithm

1: procedure DHT.createObject(Identifier id, Object o)
2: responsible← id.responsibleID
3: response← route responsible.createObjectHandler(id, o)
4: return response
5: end procedure

6: procedure responsible.createObjectHandler(Identifier id, Object o) from source
7: if localHashTable[0].contains(id) then
8: return ObjectAlreadyCreatedException
9: else

10: m.id← id
11: m.timestamp← 0
12: m.object← o
13: for all x in 0 ≤ x ≤ f − 1
14: replica← associatedIdentifier(id, x)
15: routeAsync replica.createItemHandler(id, m, x)
16: end for
17: return ACK
18: end if
19: end procedure

20: procedure replica.createItemHandler (Identifier id, MutableObject m, int x) from source
21: localHashTable[x].put(id, m);
22: return ACK
23: end procedure
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bleObject associated to the object, its timestamp is set to zero to start the increasing numbering.

Algorithm 8.2: Update Object Algorithm

1: procedure DHT.updateObject (Identifier id, Object o)
2: responsible← id.responsibleID
3: response← route responsible.updateObjectHandler(id, o)
4: return response
5: end procedure

6: procedure responsible.updateObjectHandler (Identifier id, Object o) from source
7: if !localHashTable[0].contains(id) then
8: return ObjectNotCreatedException
9: else

10: m← localHashTable[0].get(id)
11: m.object← o
12: m.timestamp++
13: localHashTable[0].put(id, m);
14: for all x in 1 ≤ x ≤ f − 1
15: replica← associatedIdentifier(id, x)
16: routeAsync replica.updateItemHandler(id, m, x)
17: end for
18: return ACK
19: end if
20: end procedure

21: procedure replica.updateItemHandler (Identifier id, MutableObject m, int x) from source
22: tmp← localHashTable[x].get(id)
23: if tmp.timestamp < m.timestamp then
24: localHashTable[x].put(id, m);
25: end if
26: end procedure

As shown in Algorithm 8.2, each time an object is updated its associated timestamp is increased

by one. This way, when an updateItem event is processed by a replica, it will only update the item

if the timestamp of the object to be updated is greater than the stored one. Remind that messages

may arrive at different order to different replicas and that messages may be lost. This mechanism

ensures that each replica stores the latest updated object (to its knowledge) regardless the ordering

or losing of messages.

To improve the performance from the entryNode point of view, the responsible node does not wait

for the replicas to be updated. Instead, once the object is updated locally by the responsible node

and once the messages to the replicas are sent, it sends the response to the entryNode in order to

continue with its processing. This way, the consistency will be assured in subsequent queries and
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the replicas will be probably updated (this probability will be studied in Chapter 9).

Algorithm 8.3: Query Object Algorithm

1: procedure DHT.queryObject (Identifier id)
2: responsible← id.responsibleID
3: response← route responsible.queryObjectHandler(id, o)
4: return response
5: end procedure

6: procedure responsible.queryObjectHandler (Identifier id, Object o) from source
7: if !localHashTable[0].contains(id) then
8: return ObjectNotCreatedException
9: else

10: m← localHashTable[0].get(id)
11: return m
12: end if
13: end procedure

Algorithm 8.3 shows the algorithms used to lookup an object stored within the Mutable Consis-

tent Layer. This protocol, by routing the petition to the current responsible node for an identifier,

ensures that the latest data will be retrieved. Notice that replicas are not involved with the conse-

quential saving regarding message complexity.

As Figure 8.5 shows, the basic communication protocol of the different roles on which the consis-

tency mechanism relies is as folloes: first, the entryNode sends the corresponding command to the

responsibleNode for the identifier. Next, the reponsibleNode sends an update message to each one

of the replicas. Finally, the responsibleNode sens a response message to the entryNode to confirm

the correct termination of the operation. This is the complete communication protocol for create

and update objects. In the case of queries, only the first and third messages are involved.

8.2.4 Maintaining Consistency when dealing with dynamism

So far, we have presented how consistency is achieved by serializing every operation through the

responsible node taking into account than no more than one node will be responsible for a single

identifier.

The challenge now is to hold the invariant previously introduced in presence of dynamism. Our

solution is the same as the DKS proposal when dealing with joins and failures [41] but differs

substantially when dealing with failures.
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Figure 8.5: Basic Mutable Layer Communication Protocol. Assume a fully populated ring with an identifier
space N set to 16 and replication factor f set to 4. Step one: the entryNode sends the corresponding message
to the responsibleNode. Step two: the responsibleNode process the message and perform the necessary
updates at the replicaNodes. Step three: the responsibleNode sends the response of the operation to the
entryNode. In the case of a query operation, step two does not imply updating replica states.

In case of join

The joining node retrieves the most up-to-date items from its successor. The atomic joining

procedure of DKS assures that, while joining, the messages sent to the interval which the

new node is responsible for are forwarded to this new node (holding the lookup consistency

property). Therefore, once retrieved all items, the new node may be able to perform consis-

tent operations against these items. The symmetric replication approach enables the DHT

to maintain the replication degree by delegating an interval to the newly joined node (cost

of θ(1)) instead of replicating it in the new f predecessors as in neighbourhood replication

(cost of θ( f ) assuming a replication factor f ).

The invariant previously introduced holds as the new responsible for a certain interval (the

joining node) will retrieve the items from the current responsible which has, by definition,

the most up-to-date values stored. This way the new responsible will have the most up-to-

date values and begin processing new requests consistently.
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In case of leave

Similar to the above mechanism, the leaving node sends the most up-to-date items to its

successor as long as it will be the new responsible. As before, the atomic leaving procedure

maintains the lookup consistency property.

Just like the joining case, the invariant holds as the new responsible for a certain interval

(the successor of the leaving node) will retrieve the items from the leaving node which was,

by definition, the responsible for the leaving interval, and therefore, had the most up-to-date

values.

In case of failure

Failure handling is the main difference regarding items managing between DKS and our

solution. Basically, once a node detects that its predecessor has failed (does not respond

to heartbeat messages), it is responsible for the interval previously held by the failed node.

Therefore, the invariant is broken as long as the new responsible does not have the items

stored locally. The chanllenge is to reconstruct the interval it is now responsible for in order

to satisfy the invariant.

DKS approach is based on retrieving the items within this interval from the first available

replicated interval (assuming each interval is replicated f times). This solution may end in

retrieving stale data as long as previous messages updating replicated values may be lost due

to replica nodes failure. This way, our previous invariant may not hold as long as replica

nodes may not have up-to-date values. Moreover, DKS does not introduce the notion of

timestamping so it cannot distinguish between stale data and current one.

Despite that, we define a mechanism which recovers the most current data at a cost of a

more complex mechanism in terms of message and bit complexity. Algorithm 8.4 shows

how a failed interval may be recovered. Basically, it sends a restoreReplicas message using

restricted broadcast mechanism3 to each one of the replicated intervals in order to recover

the values of each one of the intervals.

This message will arrive at each node within the replicated intervals. Each replica node has

to send a recoverItems message with the replicated items it is responsible to store to the

new responsible node. The new responsible node processes each recoverItems message by

updating the most current recovered item.

Once the interval is received from each one of the replicated intervals, it is able to select

the must up-to-date item and store persistenly in its localHashTable. Once every item is

recovered, the new responsible node has the must up-to-date value and, hence, the previous

invariant is held again. During the reconfiguration period (period between the predecessor’s

3Protocol provided by DKS KBR which broadcasts a message within an interval instead of the whole overlay
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failure detection and the final recovery) messages related to objects belonging the failed

interval are rejected as long as the node does not fulfill the consistency invariant.

Algorithm 8.4: Interval Reconfiguration Mechanism to deal with node failures

1: procedure DHT.intervalFailed (Interval failed)
2: for all x in 1 ≤ x ≤ f − 1
3: replica← associatedIdentifier(failed.start, x)
4: restrictedBroadcastAsync replica.restoreReplicasHandler(failed, x)
5: end for
6: end procedure

7: procedure replica.restoreReplicasHandler(Interval failed, int replicaIndex) from responsible

8: responsability← getResponsability()
9: intervalToRestore = responsability ∩ failed

10: itemsToRestore = ∅
11: for all i in f ailed.start < i ≤ f ailed.end
12: itemsToRestore = itemsToRestore ∪ localHashTable[replicaIndex].get(i)
13: end for
14: routeAsync responsible.recoverItemsHandler(itemsToRestore)
15: end procedure

16: procedure responsible.recoverItemsHandler(Set items) from replica
17: for all i in items
18: recoveredItem← recoveredInterval.get(item.id)
19: if recoveredItem.timestamp < item.timestamp then
20: recoveredItem.timestamp← item.timestamp
21: recoveredItem.object← item.object
22: end if
23: recovered.put(consensusItem)
24: end for
25: if interval received f times from each replicated interval then
26: localHashTable[0]← localHashTable[0] ∪ recovered
27: end if
28: end procedure

The main difference between the DKS algorithm and our algorithm is the number of replica

intervals queried. DKS queries only one replicated interval and waits for responses. If

responses are lost, it retries against the next replicated interval. Our mechanism introduces

a parallel interval recovery to every replicated interval at once. If some replicated intervals

are not available within some amount of time, the reconfiguration mechanism pick up the

most up-to-date value recovered so far instead of expecting the reception of every replicated

interval.
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8.3 Transactional Layer

So far, we have described how an enhanced DHT is able to provide with very high probability data

consistency. This way, through this section, we describe how we use this enhanced DHT to build

a distributed mutual exclusion mechanism which enables us to construct transactional semantics

on top of it.

As we have seen in Chapter 4, those systems are a step in the right direction to achieve mutual

exclusion over structured peer-to-peer networks, but they does not fully utilize the powerfull nature

of the DHT domain.

This layer provides simple and lightweight mechanisms to retrieve objects and update them in

mutual exclusion. It is important to provide such mechanism to enable us to build transactional

semantics and, thus, provide ACID properties to the upper layer. If we does not provide such

mechanisms to the banking layer, concurrent modifications to different account may lead to incon-

sistent account balances by losing updates.

Our idea is, basically, distribute the load of mutual exclusion requests upon the nodes building

the DHT network. This way, each node is responsible to allow the access to enter the critical

section for a set of objects it is responsible for. According the classification made in Chapter 4 we

could describe our algorithm as the special case where there is a central coordinator (responsible

node) against which nodes ask for the permission before entering the critical section. This unique

permission can be understood as a token managed by this coordinator.

8.3.1 Transactional Layer API

8.3.1.1 Event Notification

As long as the main purpose of this layer is to provide a Transactional interface to the banking

layer and isolate the upper layer from the complexities of dealing with a dynamic network, we do

not notify of any event.

8.3.1.2 External Invocations

For the purpose of our application (the banking layer), we must provide a simple transaction inter-

face as well as a mechanism to create, delete and query objects. The lock managing as well as the

update mechanisms are hidden by our Transaction Manager to the appplication layer. To enforce

the application to use the transactional mechanism to perform the updates to avoid concurrency
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Figure 8.6: Transactional Component Interface: this layer does not provide any information about the
underlying overlay network. This way, it abstracts completely the management complexity by providing a
powerfull while simple Transaction API.

issues, we do not allow direct updates against the DHT. Complete algorithms and explanations

will be presented throughout the next section. Therefore, the external API provided by this layer

is built upon the method provided by the Transactional DHT and our Transaction Manager:

Transactional DHT :

createObject : this method allows the application to create an object managed by our trans-

actional layer. It means that, besides the creation of the application object, we must

create another one which will represent the state for that object. As we will see, this

decision enables us to delegate the complexity of the transfer state issue to the Mutable

Consistent DHT Layer.

deleteObject : this method allows the application to delete both objects created previously.

queryObject : given an object identifier, it returns the associated object. Notice that it

is not necessary to do it in mutual exclusion as long as this query is only for infor-

mation purposes. If the object is going to be modified, it should be read through the

transactional mechanism.

Transaction Manager : there will be a new transaction manager for each one of the transactions

willing to be executed at the entryNode.

lock : this method adds the given identifier to the list of objects going to be acquired in

mutual exclusion.

begin : this method starts the growing phase of a transaction. In other words, it starts the

acquiring of locks for the objects identified by the identifiers introduced by the lock
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method. There are different possible policies to acquire the locks. The one we have

implemented is the ordered lock acquirement which stands for acquiring the locks

ordered by their identifiers in ascending order. As we will see, this simple mechanism

allows us to avoid dead-locks.

read : as long as the mechanism used within the begin method to acquire locks is the

lockQuery (see Section 8.3.2), once a lock is grant, the object is returned alongside the

object for efficiency purposes. Therefore, this method gives the application the object

stored locally when the reception of the object was done.

commit : once the transaction has modified each object accordingly and no exceptions has

been thrown, the commit method begin the updating of objects and its corresponding

unlocking. This time, the order of updating or unlocking is not relevant. For effi-

ciency purposes, we perform the update and unlock steps within the same message

(commitUnlock). This procedure is also called shrinking phase of a transaction.

abort : if any operation within the transaction has failed or is not possible to perform

the modification because of an exception, the transaction has to be aborted, and thus,

unlock each of the locked objects without updating them. We consider that a trans-

action may only fail due to transaction semantics, not for node failures. For example,

the Transfer Funds transaction may only fail when there are not enough funds in the

source account.

8.3.2 Mutual Exclusion Mechanism

To support the above mentioned Transactional API, a mechanism to acquire an object in mutual

exclusion is necessary. As mentioned before, current mutual exclusion algorithms for Distributed

Hash Tables has a great impact in the number of messages as well as does not provide enough

guarantees regarding fairness conditions.

Our aim is to simplify to the maximum the design of our mutual exclusion algorithm as well as

to take profit of the DHT capacities. Relaying on the Consistent Mutable DHT Layer, we use the

DHT abstraction to store the object willing to be held in mutual exclusion as well as the state of

that object. The use of the underlying DHT to store the state for an object enables us to abstract

the fault-tolerance problem of dealing with dynamism.

We provide a simple mechanism to acquire the lock of an object and relase it once the update has

been performed. To achieve atomicity we need to serialize the acquisition of those locks. The

simplest way is to route the message to acquire the lock to the responsible node for that object.

The responsible node will serialize every request to acquire the lock in a FIFO queue. These lock
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requests will be served sequentially.

Thus, our algorithms could be classified as a Centralized Permission-based approach which stands

for a simple and cheap (2-3 messages per request) mechanism providing no starvation and fairness

as long as each request is served in FIFO order. Nevertheless, this approach makes the coordi-

nator (the node responsible to manage access grants) a bottleneck. In this sense, we explore in

Chapter 9(Evaluation) which load degree the coordinator is able to manage.

8.3.2.1 Stored Objects

For the purpose of a fault-tolerant mutual exclusion algorithm, we use our enhanced mutable

identifier space to store two different but related objects within the DHT: the object willing to be

accessed in mutual exclusion and its unique associated state (Figure 8.7).

TransactionalObject : this object is a wrapper of the object stored in the DHT. We use this

wrapper to identify the state associated to this object.

StateObject : this object maintains the queue of requests for the TransactionalObject associated.

Moreover, it provides methods to modify and query the state in order to take decisions when

processing requests to the associated object. As long as the only one attribute is a queue of

requests, the state of the object returned by the getState() could be FREE (in case the queue

is empty) or LOCKED (in case the queue is not empty).

Figure 8.7: Two different objects stored within the Mutable Consisten DHT Layer. The TransactionalObject
stores the identifier of its associated state. The StateObject stores the identifier of its associated object and
provides some operations to manage it.

The use of two different objects to represent a single upper layer object is due to efficiency pur-

poses. We assume that the associated state for an object is queried and updated more often than

the object itself. This way, each time we modify the state for some reason, the object is maintained

as it was and no communication overhead is necessary. The operations provided by each object

are enough self explanatory.
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Despite using two different objects to represent a single upper layer object, we must provide only

one identifier to the upper layer. This way, we have decided to relate the identifier of the upper

layer object with the TransactionalObject. If we want to access the StateObject, we must query

the TransactionalObject first in order to know its associated state identifier.

8.3.2.2 Basic mechanism assuming a stable network

Assume we have a stable peer-to-peer structured overlay of an arbitrary number of nodes and an

arbitrary replication degree. Each node will be the responsible node for a set of identifiers.

First of all, we introduce how objects are created and deleted. Basically, the idea is to use the

create and delete operation provided by the Mutable Consistent Layer. As long as each object

created through the Transactional Layer is associated to two different objects (the object itself

and its associated state), we must create both objects in the DHT using the create operation of

the underlying DHT. The complexity of managing already created objects is held by the Mutable

Layer. In case of an object deletion, we must delete both associated objects. As long as the

identifier presented to the upper layer corresponds to the TransactionalObject, we must delete the

ObjectState identified alongside the deleted TransactionalObject.

From now on, we explain how we use the underlying DHT infrastructure to modify objects stored

in order to acquire such objects in mutual exclusion. Algorithms presented use a dht variable

which represents a way to perform calls to the underlying Mutable Consistent DHT Layer.

Algorithm 8.5 shows how the lockRequestMessage is processed by the responsible node for an

object depending on the state of the object. It begins by sending a lockObject message to the

responsible node for a given identifier. This identifier is the one associated to the object which

is wanted to be accessed in mutual exclusion. The responsible node queries from the underlying

DHT both the TransactionalObject and the StateObject. It is important to notice that both objects

will be the most up-to-date objects and that the queries to the DHT are resolved locally as long as

the responsible has the most up-to-date objects.

Once obtained both objects, the processing depends on the current state of the TransactionalObject.

If it is FREE, the request is enqueued to change the state to LOCKED and the Lock object is

created. As long as this Lock object is the permission to enter the critical section, it must be

unique in the system. For that purpose, we introduce a monotonically increasing timestamp which

is increased each time a new lock object is created.

Thereafter, the state is updated in the DHT and the Lock is sent back to the source of the request.

Upon receiving the Lock, the entry node is able to modify the object in mutual exclusion. In the
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case of a LOCKED object, the request is enqueued in the FIFO queue and the state is updated in

the DHT. No responses are sent back to the source of the request as long as the entry node has not

acquire the object. As we will see, once the object is unlocked, the next request will be served.

Algorithm 8.5: Lock Object Algorithm

1: procedure Transactional.lockObject(Identifier id)
2: responsible← id.responsibleID
3: lock← route responsible.lockRequestHandler(id)
4: return lock
5: end procedure

6: procedure responsible.lockRequestHandler(Identifier id) from source
7: transactionalObject← dht.queryObject(id)
8: stateObject← DHT.queryObject(transactionalObject.getStateID())
9: if stateObject.getState() == FREE then

10: stateObject.enqueueLockRequest(lockRequestMessage)
11: lock← stateObject.lockObject()
12: DHT.updateObject(transactionalObject.getStateID(), stateObject)
13: return lock
14: else
15: stateObject.enqueueLockRequest(lockRequestMessage)
16: DHT.updateObject(transactionalObject.getStateID(), stateObject)
17: end if
18: end procedure

As we can see in Algorithm 8.6, an unlockObject message is sent to the responsible node for a

given identifier. The responsible node queries both Transactional and State objects associated to

the given identifier. It dequeues the current lock request from the state queue and updates the state

object in the DHT. Once updated, an ack is sent to the source of the unlock request to allow the

entry node to continue with its processing. Once the current lock request is dequeued, the state

might be FREE or LOCKED. If it is LOCKED, the first lock request in the queue will be the

current lock request. Therefore, the responsible node locks the object and sends this lock to the

source of the current request. This way, the next in the queue will continue its own processing

with this object in mutual exclusion.

The algorithm for the query operation has the same semantics as the Mutable Consistent Layer

one as long as we allow queries without having the object in mutual exclusion. This is due to the

fact that its application dependand to know the concret necessities of the application in terms of

consistency when reading objects. If the application wants to read the object in mutual exclusion

it may perform a lock request before reading it but it is not mandatory.
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Algorithm 8.6: Unlock Object Algorithm

1: procedure Transactional.unlockObject(Identifier id)
2: responsible← id.responsibleID
3: response← route responsible.unlockRequestHandler(id)
4: return response
5: end procedure

6: procedure responsible.unlockRequestHandler(Identifier id) from source
7: transactionalObject← DHT.queryObject(id)
8: stateObject← DHT.queryObject(transactionalObject.getStateID())
9: stateObject.dequeueLockRequest()

10: DHT.updateObject(transactionalObject.getStateID(), stateObject)
11: return ACK toNode source
12: if stateObject.getState() = LOCKED then
13: lock← stateObject.lockObject()
14: return lock toNode lock.holder
15: end if
16: end procedure

In the case of the commit operation, the only one difference between it and the update algorithm

of the Mutable Consistent Layer is the lock check. In other words, before updating the object in

the DHT, we check that node performing the commit operation is the holder of the current lock

stored in the StateObject.

With this basic mechanism, the application could acquire an object in mutual exclusion for mod-

ifying it without interferences when an stable network (without joins, leaves nor failures) is con-

sidered. For efficiency purposes we provide two more operations: lockQueryObject and com-

mitUnlockObject. The first operation allows the application to lock an object and, as a result, it

receives the locked object. In the second one, the application is able to commit a modified object

and unlock it in one step without incurring in two rounds of communications.

8.3.2.3 Mechanism to deal with dynamism

Throughout this section we propose a mechanism to deal with the intrinsic dynamism of peer-to-

peer overlay networks. We will distinguish between requestor node failure (a node holding a lock

stop working) and interval reconfigurations (the interval responsability has changed due to some

reasons).

Requestor node failure If a node holding a lock of a certain object fails, it arises an issue regard-

ing the liveness property of our algorithm. In other words, if a node holding a lock fails
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Algorithm 8.7: Commit Object Algorithm

1: procedure Transactional.commitObject(Identifier id, Object object, Lock lock)
2: responsible← id.responsibleID
3: response← route responsible.commitRequestHandler(id, object, lock)
4: return response
5: end procedure

6: procedure responsible.commitRequestHandler(Identifier id, Object object, Lock lock) from
source

7: transactionalObject← DHT.queryObject(id)
8: stateObject← DHT.queryObject(transactionalObject.getStateID())
9: if stateObject.getCurrentLock() = lock then

10: transactionalObject.setObject(object)
11: DHT.updateObject(id, transactionalObject)
12: return ACK
13: else
14: return NACK
15: end if
16: end procedure

before performing the unlock, it will be impossible that future lock requests will be served

as long as the responsible node will detect that the object is still locked and it will enqueue

the request. As long as no unlock requests will be received, the object will remain locked

forever.

For that purpose, we introduce the idea of a LockAlive Manager. The LockAlive Manager

is a component (See Figure 8.1) which is executing at the responsible node. It basically

ensures that the entry node holding a lock is still alive after a certain amount of time (namely

lockAlivePeriod).

This way, each time a node acquires the lock for an object, the LockAlive Manager will send

a LockAliveMessage to the holder of the lock every lockAlivePeriod period. If the holder of

the lock does not respond within a lockAliveTimeout period, the LockAlive Manager will

consider it as failed and will initiate the recover process. The recover process consists of

basically unlocking the object following the Algorithm 8.6. This way, the object will be

served in mutual exclusion to the next request in the queue. For simplicity purposes, we do

not consider undo or rollback operations without losing any kind of functionality. In other

words, if a node commits and object correctly but fails to perform the unlock operation due

to a failure, the commited object will persist in the DHT despite the unlock operation has

failed.

This situation makes sense as long as if a client performs a commit for an object (without
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unlocking), the node wants this modification to be persitent even if it fails. If the application

requires atomic commit and unlock it may use the commitUnlock operation provided for

efficiency purposes.

Interval reconfiguration Interval reconfiguration means the movement of items within the DHT

when nodes join, leave or fail. As mentioned in Section 8.2, these three events are masked to

isolate the upper layers from the complexity of managing such low level events. This way,

our Mutable Consistent Layer offers two differents events which helps the Transactional

Layer to reconfigure itself: intervalJoin and intervalLeave. Moreover, our enhanced DHT

ensures that new objects stored will be the most up to date object present in the DHT.

Interval Leave Event : If a new node joins the overlay, its new successor will arise an

intervalLeave event as long as it will stop being the responsible for a certain interval

of identifiers. This event is simple to manage as long as the current responsible node

must cancel every LockAlive timer managed by the LockAlive Manager as long as it

has no responsability on this interval from now on. The new responsible will handle

those LockAlive timers.

Interval Join Event : If a node leaves the overlay or fails, its current successor will re-

ceive an intervalJoin event as long as it will begin being the responsible for the leav-

ing node’s interval. To reconfigure the LockAlive Manager state, it must initiate a

LockAlive timer for each new object belonging to this joined interval which state is

LOCKED. If the state is FREE it has nothing to do.

With this two events, the Transactional Layer is able to reconfigure itself and continue man-

aging the requestor failure as if no dynamism where present. Without the presence of these

two events and its consequent reconfiguration, dead locks may occur. To show you this

case, assume an entry node which is holding a lock for an object and that a lock alive timer

is active at the responsible for that object. If the entry node fails and, thereafter, the respon-

sible node fails or leaves before the lockAliveTimeout is expired, the new responsible for

that object will not be aware that the lock holder has failed. Therefore, as long as no unlock

messages will be received for that object, it will always consider this object as locked and

subsequent lock requests will be enqueued within the state object.

8.3.2.4 Safety and liveness considerations

Once outlined our algorithms, we demonstrate informally how those maintain both safety and

liveness properties without taking into account failures:
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Safety property : as we outlined in Section 4.2, the safety property is defined in terms of the

mutual exclusion condition. It is acomplished by requesting the lock for an object and

granting it iff the lock is not held by another process. As long as the responsible node only

grants the permission to enter the critical section to one process at a time, there will be only

one process able to manipulate the object (fulfilling the mutual exclusion condition).

Liveness property : as we introduced previously, the liveness property is defined in terms of

the deadlock freedom condition or, more explicitly, no process will be denied to acquire

an object in mutual exclusion once a request is perfomed. It is acomplished by storing

each request and serving it sequentially once the current holder of the lock releases it. We

assume that the critial section processing ends within a finite amount of time and, thus, each

subsequent request will be served eventually.

Fairness property : besides the liveness property, we provide a stronger condition, namely FIFO

ordering. This condition assures that each request will be granted in the same order as they

have arrived to the responsible to manage the lock for a certain object. This way, each

process will have the same chance to enter the critical section depending on the number of

concurrent requests to enter. Moreover, we consider that a process enters the critical section

once the request has arrived to the responsible node but the access is not granted until it is

the first request in the queue.

Taking into account failures, both properties are satisfied too. The safety property is compromised

if a responsible node for a certain object fails with an arbitrary object state. This way, the new

responsible must retrieve the last modified state in order to continue the execution from the same

point. This procedure is also called state transfer [35]. We use the underlying DHT to store

each state object so the state transfer is done at the DHT level. This way, we rely on the high

probability of recovering the most up to date data offered by our enhanced DHT. If an out of date

data is retrieved, the behaviour of the algorithm is unexpected as long as two different nodes might

acquire the lock. Despite that, the probability of recovering stale data is extremely low.

Regarding the liveness property, it is compromised if a current holder of a locked object fails as

long as the next requests in the queue will wait forever untill the object is released. We solve this

situation by detecting when the holder of a locked object fails by means of the LockAlive Manager

component (which checks if the current holder is still alive).

The fairness property is maintained taking into account both mechanisms previously mentioned.

As long as the queue of requests is stored within the state of the object, a failure of a responsible

node does not imply the losing of those requests. Therefore, the FIFO ordering is preserved once

the object is recovered. In the case of a lock holder failure, once the LockAlive Manager detects
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that it has failed, it will fire the unlock procedure and, therefore, grant the next request in the queue

to enter the critical section.

8.3.3 Transactional Mechanism

Once outlined how to achieve an object in mutual exclusion, we introduce how a transactional

mechanism providing ACID properties is constructed on top of it. Basically, we offer the appli-

cation basic operation to deal with transactions in such a way that the complexity of acquiring

objects in mutual exclusion is hidden.

Figure 8.8: TransactionManager Class Diagram

Basically, as shown in Figure 8.8, what we offer are operations to create, delete and lock objects

as well as begin, commit and abort transactions. As explained in Section 8.3.1, we offer a simple

interface to begin, commit or abort a transaction.

We must take into account that dealing with transactions might produce deadlocks as long as each

transaction may acquire shared resources (accounts in our case) in mutual exclusion. There are

four necessary conditions for a deadlock to ocurr:

Mutual Exclusion : each object is being managed by a single process or any at all.

Hold and Wait : each process is waiting for acquiring more than one resource in mutual exclu-

sion to execute its critical section.

No preemption : an object only is released if the holder of the lock do it. No other process is

able to release an object on behalf of the owner.

Circular Wait : there is a circular chain of two or more process where each one is waiting to

acquire an object which has been previously acquired by the next member of the chain.

Avoiding one of those four previous conditions, the system is free of deadlocks. Erasing the Mu-

tual Exclusion and Hold and Wait are imposible as long as our system needs both. Providing
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preemption to our mutual exclusion algorithms would arise more complex mechanisms to man-

age the lock as long as different locks for the same transaction are managed by different nodes

(different responsible nodes for different objects).

This way, the easiest way to avoid deadlocks is avoiding the circular wait condition. This is done

by applying a global order when trying to acquire a lock in such a way that every process acquire

locks in the same order. This order will be the natural order of the object identifier (which is

basically a number of type long).

Therefore, the begin() operation acquires locks following the object identifier order. In other

words, it begins acquiring the object with the lowest identifier and, once obtained, it acquires

subsequent objects following an ascending natural ordering.

Nevertheless, this policy may be system dependand as long as the probability of acquiring con-

flicting objects may vary. In a system where the probability of acquiring the same object in mutual

exclusion is low, this ordering mechanisms would deal to high delays due to waiting for resources

to be acquired. In this case it would be better to try to acquire locks in parallel (without any pre-

stablished order) and try to detect when a deadlock has occured. We have decided to implement

the order mechanism for simplicity although in future versions it would be possible to extend the

implementation to detect when deadlocks occur.

To sum up, using this transaction interface, the application is able to implement operations which

need stronger guarantees decoupling the complexity of acquiring and releasing locks on demand

and hidding the overlay network management. Regarding the application view, it will only interact

with this interface as if the operation was performed locally to the application.

Algorithm 8.8 shows an skeleton of a transaction, based on which every transaction can be imple-

mented.
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Algorithm 8.8: General Transaction Skeleton

Require: ob jects: list of ids which the transaction wants to acquire in mx
Require: manager: responsible to hide the complexity of managing mx. External Interface.

1: procedure Application.runTransaction()
2: for all id in ob jects
3: manager.lock(id) /* Introduce objects to be acquired in mutual exclusion */
4: end for
5: manager.begin() /* Growing phase */
6: object1← manager.read(id1) /* Read object with id1 */
7: object2← manager.read(id2) /* Read object with id2 */
8: . . .
9: /* Modify objects accordingly */

10: if No Exceptions then
11: manager.commit() /* Shrinking phase with updates */
12: else
13: manager.abort() /* Shrinking phase without updates */
14: end if
15: return result
16: end procedure

8.4 Banking Layer

Having a simple transaction interface to work with, it is very simple to construct the banking layer

as long as the complexity of managing overlay related events is hidden. This layer contains three

basic modules: Transaction Commands, Account Management and Security Management.

8.4.1 Transaction Commands Component

We have decided to build this layer based on the Command Pattern in which objects are used to

represent actions. A command object encapsulates an action and its parameters. This way, the

CMS Gateway Layer could be implemented in any way without concerning which commands are

available or, for instance, to apply priority policies on different commands. It is a common way to

implement a command to be executed in a different thread. This way, a thread pool containing dif-

ferent threads may execute whatever command as long as each command is independently defined

with its own related information.

Figure 8.9 shows different commands implemented in the Banking Layer in order to fulfill the API

presented in Table 6.1 (CMS Banking Layer API).

Notice that the Command abstract class has two implemented methods to store and retrieve the
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Figure 8.9: CMS Banking Layer Commands

result of transaction. This result will always be of abstract type Receipt to ease the handle of

different result type.

8.4.2 Account Management Component

The basic entity to manage user accounts are Accounts. This entity is the one stored within the

DHT regarding the banking layer. The entity Account is composed, as shown in Figure 8.10, of:

an AccountID : this object allows the system to uniquely identify the Account. This accountID

will be used to index the account within the DHT.

a Credential : this interface allows the system to compare the current identity of the account

owner and the identity of the user trying to perform the transaction. If the credentials are

not correct, the system does not allow to perform the operation and the transaction is can-

celled without any modification. As for now, we have implemented a SimpleCredentials

class which contains a single string. If the strings are not equal the checkCredentials oper-

ation return false. Envisaging the future, this class will wrap some kind of cryptographic

information which enables the system to cryptographically identify the owner of this ac-

count.

a Balance : within this object we store the current balance of the user account as well as the

balance reserved for future transactions. We provide to simple methods such as increase

and descrease both balances in order to allow transactions to modify them accordingly.
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a list of TransactionLog : each TransactionLog will be usefull for two different purposes taking

profit of polimorphism:

• maintain a log of every transaction finished correctly within this account and, there-

fore, serve for the purpose of logging.

• encapsulate information regarding a single transaction and, therefore, implement each

kind of transaction separetedly.

This way, when addTransaction is executed, the Account appends the current transaction

beeing processed in the list of transactions (logging) and then execute the transaction to

perform the actual operation being in course transparently (modify balance).

Figure 8.10: Account and Receipts Class Diagram

8.4.3 Security Management Component

So far, Grid4All has not taken any kind of decision regarding security management. We will

be discussing it in the near future taking into account the security requeriments presented in

Section 6.1.3.
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As a summary and to show the reader how the interaction is done between these different compo-

nents we show the complete sequence diagram of the transferFunds transaction assuming that two

accounts have been created previously (See Figures 8.11, 8.12 and 8.13). The rest of transactions

follow the same scheme changing only the error handling and the account modifications made.

Figure 8.11: Example of CMS API call through an abstract gateway node. The client asks through a
previously known mechanism (Web-Service, WSRF, Internal Protocol, etc.) to a concrete API method. It
shows how the entry node creates the Command object and execute it in a separate thread.
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Figure 8.12: Example of a transaction execution following the general transaction algorithm, more con-
cretely the TransferFunds Transaction. The figure shows how the transaction asks for a TransactionMan-
ager, which will be the responsible to manage the locking and unlocking of objects within the Transaction-
alLayer. First of all, it asks to lock the source and destination accounts through their identifiers (specified
within its AccountID). Thereafter, the transaction calls begin() which actually begin to requests the locks.
Once obtained, the transaction read the locked values (this read is local as long as the lock mechanism
retrieves the account as well). Finally, it checks for correct credentials, execute the according modifications
and commit the results if no exceptions has been thrown.
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Figure 8.13: Example of the logic of the TransferFunds transaction. It shows how both deposit and with-
draw transaction logs are created for both account modifications. Once created, each transaction log is
inserted within the account which means: a) add this transaction to the history of transactions and, b) exe-
cute the transaction which is to increase or decrease the balance of the account depending if the transaction
is deposit or withdraw respectively.
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8.5 Implementation details

Throughout this section we introduce common components to every layer in more detail show-

ing the reader some sequence diagrams which will help to understand how we achieve certain

properties explained in previous sections.

8.5.1 Message Dispatching Component

As long as our aim was to develope a middleware independently (to a certain degree) of the under-

lying KBR Layer, we have developed our own message dispatching mechanism. The introduction

of this component allows us to develope a synchronous communication without concerning how

the asynchronous mechanism is provided by the lower layer.

Figure 8.14 shows the class diagram of the message dispatcher component. Each message dis-

patcher has a thread pool responsible to execute handlers associated to each message type. As

long as the thread pool has a limited size of threads executing actions, we must encapsulate the

necessary information to execute the handler associated with a message in a class named Mes-

sageDispatcherJob. As long as it implements the Runnable interface, the ThreadWorker is able to

execute this job. This job basically contains a MethodInvoker (also message handler) which en-

capsulates the method to be executed and the object defining such method. This class invokes the

method within an object dynamically by means of the reflect package which helps to instantiate

and call methods given their string definitions (complete class definition in the case of instantia-

tion, complete signature in case of calling methods).

We have implemented a basic message dispatcher which sequence interactions are shown in

Figure 8.15. Despite this basic implementation, different layer might need different approaches

to deliver messages to their associaciated message handlers. Notice that each message dispatcher

might have a callback message dispatcher used to deliver messages which are not meant to be

handled within this layer.

For this purpose, we have extended the basic implementation to accomodate each layer to its own

specific requirements:

MessageDispatcherReconfiguration : (See Figure 8.16). Messages arrived to this layer while

the node is reconfiguring its state (retrieving items from the replicas to select the most up-

to-date) will lead to inconsistent results as long as the node would receive a message to

modify an object which is actually being recovered. This way, if the destination of the

message belongs to an interval which is under reconfiguration, the message is discarded.
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Figure 8.14: Message Dispatcher Class Diagram

The resending mechanism after a timeout implemented will retry to send the message after

a certain time and allow the layer to finish the reconfiguration.

The diagram shows how the ReconfigurationManager is able to discern if a message desti-

nation is within an interval which is being recovered (actually failed).

MessageDispatcherSerializer : (See Figure 8.17). Messages arrived to this layer are related to

transactional semantics and, therefore, concurrency issues. A naı̈ve solution would be to

synchronize each message handler in such a way that the code executed within a message

handler will be done atomically. This would deal to a high overhead when trying to handle

several message concurrently as long as each message introduce a delay within the rest,

including when executing the same code for different objects.

Our solution is based on serializing only those messages which are related. We consider

that two messages are related if they are sent to the same identifier. This way, we allow

concurrent message handler execution when accessing different objects. If two messages

are related, the message dispatcher enqueue the next request till the previous one has fin-

ished. As we will show in Chapter 9, this mechanism introduces a very little overhead when

dealing with high concurrent load, due to a small necessary synchronized part of code .
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Figure 8.15: Message Dispatcher Sequence Diagram
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Figure 8.16: Message Dispatcher Reconfiguration Sequence Diagram. This diagram shows the reimple-
mentation of the dispatchMessage method inherited from the MessageDispatcherBasic class. If the desti-
nation identifier is within a failed interval, the message is discarded to avoid inconsistent responses.
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Figure 8.17: Message Dispatcher Serializer Sequence Diagram. Reimplementation of two methods pro-
vided by the basic message dispatcher. Both deliverMessage and messageDispatcher are different methods
although they are presented within the same sequence diagram.
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8.5.2 Synchronous Communications over asynchronous primitives

The main difference between them are the message handling done at the sender node:

Asynchronous communication : once the node delivers the message to the network, it continues

with its execution. Further messages will be dispatched by any message handler registered

at the message dispatcher.

Synchronous communication : once the node delivers the message to the network, it waits till

the other node responses to this concrete messsage. Once the node receives the response it

continues with its execution.

We have implemented our synchronous route primitive relying on the asynchronous route primi-

tive. Assume that each message has an identifier constructed by some mechanism and it is unique

within the system.

The sender will route asynchronously the message to the receiver. Thereafter, it will wait for a

unique object stored within a hashmap indexed by this identifier. The receiver node, after it has

received and processed the message, will route asynchronously a new message with the same

identifier. Upon the reception of the message, it will check if a thread is waiting for that message

querying the previous hashmap. If there was a thread waiting, it passes the message to waiting

thread and notify that it is able to continue its execution.

Figure 8.18 and Figure 8.19 shows this mechanism.

Figure 8.18: Synchronous Communication Class Diagram. This class provides two basic static operations
(underlined) to start and get a previously created AsyncCommand Instance. The waitOn() and waitOn(long
timeout) are operations to wait till the response is received with and without an spceified timeout). The
complete method is used upon the reception of a message to wakeup a thread waiting on this object.
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Figure 8.19: Synchronous Communication Sequence Diagram. This diagram shows how the thread respon-
sible to send the message waits till the response arrives. Thereafter, the thread is woken up and is able to
continue its execution taking into account the response.
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System Evaluation and
Characterization

Throughout this chapter we introduce the experiments executed to evaluate the performance of our

system. In Section 9.1 a discription of the execution environment is presented. In Section 9.2 a

quantitative perfomance evaluation is shown. Finally, Section 9.3 presents a qualitative compari-

son of our algorithms against the previous surveyed systems.

9.1 Execution environment

The experiments were executed in a 70 nodes cluster with a Gigabit Ethernet connectivity. Each

node is composed of two Intel(R) Xeon(TM) CPU 2.80GHz slots and 2 Gb of shared memory.

Each node has a local scratch zone within which accesses have high performance compared with

the common scratch zone used to store the results of the experiments.

This cluster is managed by a queue system developed by Sun and called N1 Grid Engine which

allows users to send jobs to be executed within the less loaded node available. The cluster is called

ferrer and it is located at the Laboratori de Càlcul d’Arquitectura de Computadors (LCAC).

This way, our experiments were based on executing several jobs at the same time executing our

CMS system. Each time a new job was allocated within a node, the first step was to join the overlay

through a known node already existing within the overlay ring in order to join and evaluate our

assumptions.

The decision of firstly test our assumptions on a cluster instead of on a more real scenarion (such
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as PlanteLab [61]) to control more extensively the behaviour of our system without concerning

about transmission delays or other unexpected behaviour of planetlab nodes. This way, we could

drive controlled experiments and characterize more precisely our system.

9.2 Evaluation

We have divided our experiments in two parts. The first one is the evaluation of our Transactional

Layer in terms of the requests throughput and time responses depending on concurrency issues.

The second part is a simple theoretical evaluation of our Mutable Consistent Layer in terms of

the probability of breaking our assumptions and, therefore, returning incorrect or stale data and its

associated cost.

9.2.1 Transactional Mechanism Evaluation

Our transactional mechanism was designed for performing efficient lock and unlock of objects

while assuring the mutual exclusion properties. This way, our experiments were driven in this

sense: evalute the performance of our decisions compared with the underlying DHT infrastructure

without the mutual exclusion mechanism.

The idea is to measure the overhead and lock grant response times taking into account the number

of requests per second that a single node could handle and the identifier against which the request

is made.

Taking into account our assumption, we expect that when executing different lock requests against

different objects (and thus with different identifiers) the response times should be similar to the

DKS results as long as they are not conflicting objects. In the other hand, requests against the

same object would drive to accumulative response delays due to the queueing of requests.

9.2.1.1 Experiment setup

The first step to perfom such experiments was to set up a 50 nodes ring overlay with pseudorandom

node identifier selection. For that purpose, we execute one bootstrapping node with a known node

identifier (node identifier 300) and within a fixed cluster node (ferrer-80). The rest of nodes which

will build the overlay will join it through this well-known bootstrapping node with a pseudorandom

node identifier. This way, we assume that nodes are spread evenly arround the ring and none of

them would be a bottleneck due to message forwarding.
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We perfomed 50 rounds of this setup, increasing sequentially the number of requests per seconds

in each round this way: each node performs one request per second against the bootstrapping

node for locking and releasing an object in such a way that in the ith round there will be i nodes

performing one request per second. This way, the bootstrapping node will handle i requests per

second. We mesure the load on the bootstrapping node as long as we assume that requests made

to different nodes are treated independently.

These 50 rounds were executed within three different scenarios in the following way:

Contention : each second, nodes perform a request to lock and unlock the object against the same

identifier (identifier 100 belonging to the bootstrapping node interval responsability). Thus,

we expect to see that the more nodes performing requests, the more long will be the delay

to achieve the lock due to our queueing requests mechanism.

Non-Contention : each second, nodes perform a request to lock and unlock the object against

different identifiers. Assume each node is labeled in the range [1 − 50], then the nodes

perform the requests against the object identified with the identifier 100 + label. This way,

each node will perform requests against different identifier. Thus, we expect to see that the

more nodes performing requests, the time to serve the request would be similar for all of

them as long as each object is independent of each other.

DKS : each second, nodes perfom a request to get and put the object against different identifier

using DKS native mechanism to manage their DHT. It has no sense to measure its behaviour

against the same object as long as DKS does not handle mutual exclusion and thus, the

results would be very similar. We will use these results as a basis against which compare

our mechanism.

Finally, each round is executed during 15 minutes. We drop off the first 5 minutes of the execution

In order to stabilize results.

9.2.1.2 Results

Figure 9.1 shows the median and the standard deviation of the results for each round and scenario.

We can see how the Non-Contention and DKS results are similar and highly lower than the Con-

tention scenario. This asserts our assumptions that the more requests per second against the same

object, the response times are increased due to the queueing of requests. The most interesting

result within this figure is the fact that each request is served within a bounded period of time

independently the requests performed asserting the liveness property of our algorithms. It is the

consequence of queueing the requests in a FIFO queue.
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Figure 9.1: Response Time vs Requests rate Comparison

Figure 9.2 shows a zoom of the Non-Contention vs the DKS scenario. We can see that our mecha-

nism imposes a little overhead compared with the DKS as a penalty to achieve the object in mutual

exclusion. Despite that, this overhead is only observed when increasing the number of requests

to be handled to more than 15. This is due the synchronization variable used by our message

dispatcher to deliver the messages in order as explained in Section 8.5.1.

Figures 9.3 and 9.4 are results regarding the throughput comparison of our three scenarios against

the requests per second. As expected, our mechanism is able to handle each request per second

within the same second in the case of Non-Contention. In the case of Contention, the number of

response which is able to handle is stabilized to 4 requests per second (more or less). The figure

enlarged shows how the more requests against the same object are made, the less throughput is

achieved due to the overhead of updating the state associated to that object.

As the results show, our mutual exclusion mechanism imposes a little overhead when dealing

with independent objects compared with the simple DKS approach which does not provide our

constraints. In the case of contention, we can see that our solution scales well when dealing

with less than four requests per second against the same object. We must take into account that

contention translated to our Currency Management System means that several transactions are

made against the same account (the same user is paying or receiving a payment at the same time).

Considering this situation, we do not expect to have such number of concurrent requests against

the same account.
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Figure 9.2: Reponse Time vs Requests rate zoom comparison

Figure 9.3: Throughtput vs Requests Rate of our system with and without contention. That is, performing
requests against different objects and against the same object respectively.
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Figure 9.4: Throughput vs Requests Rate of our system with contention. The zoom is shown in order to
show more concretely how the more requests are made against the same object, the throughput decreases.

9.2.2 Consistency Mechanism Evaluation

Our transactional mechanism was implemented on top of our enhanced DHT abstraction relying

on its high probability of returning the most up-to-date data stored under a given key. While

returning up-to-date data in case of joins and leaves is assured by the lookup consistency property

provided by DKS and routing each requests to the single responsible node for a given key, in the

case of failures this is not true. Our aim was to provide low probability of recovering stale data in

case of failures.

To measure our enhancements against the DKS approach, we consider a ring overlay where nodes

may fail arbitrarily. Consider that the probability of losing a replica update is p. If a replica is not

updated, we consider that it stores an stale item. For simplicity, we do not consider the reason for

that replica update failure (it may be due to message lost or replica node failure).

DKS recovery : when a node detects that its predecessor has failed it must recover that failed

interval. For that purpose it only asks the first replicated interval to recover the items. If

the interval is recovered, those items might be stale data with a probability of p as long as

it does not asks each replicated interval (maybe the most up-to-date data is within the last

replicated interval). It does not take into account the number of replicas within the system.

Consistent recovery : when a node detects that its predecessor has failed it must recover that
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failed interval. For that purpose it asks each replicated interval to recover the items and select

the must up-to-date, or in other words, the items with a higher associated timestamp. Thus,

the probability of recovering stale data is the probability of that each replicated interval loses

the last update. Therefore, the probability is pk where k is the number of replicas within the

system.

Figure 9.5 shows how the probability of recovering stale data with DKS is constant independently

of the number of replicas within the system. In our solution, the more replicas within the system

the less probability of recovering stale data is achieved. Moreover, our system is able to deliver a

high probability of recovering up-to-date data when dealing with a high failure probability (0.5)

setting up the system with 8 replicas.

Figure 9.5: Probability of recovering stale data depending on the number of replicas within the system.

Nevertheless, our enhancements come at a cost of sending several messages to k replicas and

merge different items from different replicated interval. As long as DKS only asks one interval,

the first interval recovered is considered as correct and stops the recovering process. In our case,

we must ask each replicated interval and waits till every response is received in order to select the

item with the highest timestamp.

Figure 9.6 shows that, while the DKS recovery times remains constant independetly of the number

of replicas used, the more replicas used in our solution the more time it takes to make a decision

on which item is the newest one.
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This experiment was based on the previous presented setups. We set up a 64 nodes ring overlay

with a random identifier assignment to evenly distribute nodes along the ring. Each minute, we

stop one node and measure the time taken by its successor to recover the failed interval. This

procedure was done for every node within the ring. This round was repeated for different replica

setups and the median for each round is presented in Figure 9.6

Figure 9.6: Interval recovery comparison taking into account the time frame from the detection of a failed
interval to the complete recovery of the interval.

9.3 System comparison

Throughout this section we provide a simple comparison of our system against two of the systems

presented in Part I regarding consistency as well as mutual exclusion mechanisms.

Regarding consistency mechanism, our solution is more efficient in terms of message complexity

that the one presented by Etna [48] when dealing with joins and leaves as long as we only need to

send messages against one node (the joining or leaving one) whilst Etna needs to reconfigure its

state by contacting each node within the new replica set. In the case of failures our performance

is similar as long as our solution drives the system to contact each of the replicas as in the case of

Etna. This improvement is, to a great extent, thanks to the symmetric replication approach and the

lookup consistency mechanism provided by the underlying KBR Layer.

Regarding the mutual exclusion issue, our solution is more efficient in terms of messages sent that
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the ones presented in Section 4.4 as long as we focus our solution in a central coordinator approach

which only needs two messages (request/response) to grant the request in mutual exclusion. By the

other way, other mechanisms were based on a distributed permission based approach which drives

to a number of messages proportional to the number of replicas within the system. Moreover, we

provide certain guarantees such as FIFO delivery which distributed permission based are not able

to provide. Nevertheless, our system is prone to long delays to serve requests in case the central

coordinator for a certain interval fails (as long as the new responsible has to recover the interval

failed).
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The duration of the whole project, supposing a full-time work of 7 hours a day, 5 days a week, is

shown (with the Gantt diagram) in Figure 10.2.

All the work is clearly divided in three different phases, namely survey of related work, develop-

ment of the system itself and the proposal documentation. Notice that the development process

began with our enhancements of the DKS DHT as long as it is the basis for the rest of upper layers.

Besides, the critical path is further enlarged due to the delay introduced by the developers of the

underlying p2p infrastructure. As long as our system is developed on top of the DKS DHT, we

were waiting for a newer release they have planned to publish in the early December in order to

take profit of newer advantages. This advantages ranged from more polish and documented code

to more extensibility capabilities of their software.

This release is not still published so our decision was to base our code in the older version (which

stands as a proof of concept of DKS algorithms). This way, the lack of documentation of their old

DKS and this waiting for the new release introduced a huge delay before the development process

began.

Even that, there is some work that can be parallelized. Although they are all separated in multiple

roles, all the project has been done by a single person, which makes it difficult to know if the

different role timings have been strictly followed, and adds some indeterminism in the realization

of it, due to the constant switching between the many open tasks.

Figure 10.1 and Table 10.1 indicates the duration and costs of the different tasks of the project

as well as the role assignment respectively. To calculate that, an estimation of the prices in the

computer sector has been used (from a study made during 2006 by AETIC [62]).
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Figure 10.1: Task duration and cost. The cost of each task depends on its duration as well as the cost per
hour of its associated roles.

Figure 10.2: Project Planification Gantt Diagram. The critical path is highlated.

Role Alias e h

Project Manager PM 58

Technical Analyst AT 45

Functional Analyst AF 37

Programmer Analyst AP 28

Table 10.1: Costs by roles
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The only cost that has not been taken into account is that of the software and the hardware. The

first, as we have entirely used free software, it has no cost, while for the later a Laptop with an

Intel Centrino of 1.8Ghz, 1GB of RAM and less than 50 GB of HD has been used. This machine

has a current cost in the market of approximately 900 e. Taking into account a 4 years lifetime for

the laptop and the duration of the current project (9 months approx.), it implies an amortization

cost for the laptop of approximately 169 e. The hardware used to perform the experiments were

provided by the Computer Architecture Department Lab for free so no extra cost is added for using

their cluster.

Thus, taking into account the different human resources working in different roles as well as hard-

ware and software resource costs, the overall cost of the whole project rounds the 99811 e.
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Conclusions and Future Work

In the last few years, the resource allocation problem within internet-scale Grid deployments has

been addressed using economic models. Whilst lot of research has been done to demonstrate the

validity of these models, the lack of mechanisms to control the resource usage amongst several

users has slow down real deployments. One of the main objectives within Grid4All is the de-

ployment of real market based resource allocation by enabling users to share their resources in

exchange for real money.

Within this context, we have developed a distributed banking service for the Grid which enables

users to perform and receive payments for resources usage and sharing without incurring in the

cost of real payment mechanisms, i.e avoiding taxes.

We have implemented our prototype by developing an enhanced DHT which provides stronger

guarantees (compared with current DHTs implementations) such as:

Consistent Storage : by modifying DKS in order to assure that every get operation returns the

last put operation through the responsible node for a given object regardless the inherent

dynamism of p2p overlay networks.

Better Concurrency Guarantees : by allowing clients to acquire an object in mutual exclusion

avoiding possible conflicting updates. We take profit of the underlying enhanced DHT in-

frastructure in order to simplify the algorithms and to ease the state’s transfer associated

with a locked object.

Transactional semantics : by enabling applications to perform a sort of database transactions

when dealing with operations which need to be performed with ACID properties.

The layered architecture enables us to exchange whatever component in the near future and use it
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independently. Moreover, the Mutual Exclusion technique on top of a DHT might be used stand-

alone as a sort of lock service in such a way that whatever system defined component needed to be

accessed in mutual exclusion may be accessed through this service by locking its associated object.

For instance, assume a cluster of computers identified by its IP address and applications which

need to execute applications on some nodes in mutual exclusion (no more than one application per

node). The application might ask for the lock of the object associated with the IP address of the

node and release it once the application has ended. The rest of applications willing to access this

node will wait till the application has ended.

The results presented encourage us to continue with the development of our prototype by en-

hancing the message serializer dispatcher component which is the main cause of the overhead

generated.

Another open issue is the case when a client executing a transaction fails after committing some of

the objects but not all of them. This case breaks the atomicity property as long as some updates are

performed and some others not. Nevertheless, this would be solved if we use the underlying DHT

to store the transaction objects as well. This way, if a node fails when committing a transaction,

the new responsible node for the given transaction would be able to end up this transaction regard-

less the committed objects. However, we have to investigate if the cost associated to inserting a

transaction within the DHT worths, taking into account the low probability of client failure within

a limited bounded time during which the transaction is committed.

Whatever enhancements might be introduced to our algorithms, we expect to be working on the

following checkpoint list in the near future:

Fractal component integration : The componentization of our Currency Management System

in Fractal components [58] is necessary in order to integrate it with the rest of Grid4All

components as long as the deployment of applications within the Market Framework will

be done by means of this composition technique. Moreover, we must still define how the

Market Framework service will be accessed in order to develope the CMS Gateway Interface

Layer.

Adaptation to Niche (former DKS) : Adapt and integrate our solution to the underlying overlay

infrastructure of Grid4All. Despite our solution is based on DKS, a new version of this p2p

middleware will be released in the new future with the name of Niche.

GMM service integration : Discuss about integrating our Currency Management System inside

the Grid Market Middleware (GMM) [63] we are developing within the Computer Networks

and Distributed Systems research group. The GMM is an economic based grid resouce

management middleware which offers an open platform that supports the implementation of
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diverse economic based resource allocation mechanims, offering a set of basic mechanisms

that facilitate its implementation.

More long term development issues will be the integration of our payment mechanism with a real

one in order to carry out the real payments once the user wants to withdraw its current virtual

currency by another real currency (for instance, PayPal).
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Appendix A

Conventions for the notation of
algorithms

Throughout the document, we used a custom algorithm notation in order to specify the messages

sent by different nodes. Within this appendix, we specify the notation convention in order to clarify

the semantics used.

Each component has its own specific methods with its own specific parameters. Assuming that the

signature of the different operations for each component is known, we use the following notation

to denote a call to an API method depending on wether it returns some value or not:

component.methodName(parameters)

result← component.method(parameters)

Notice that these calls are made local to the node. In other words, the computation performed with

these calls are local and no messages are sent through the network to execute them.

Regarding the KBR Layer, a special notation has been used to ease the understanding of the

message passing interface used. This way, we use a similar notation to that of the RPC calls,

specifying the destination node id, the remote procedure name and its parameters. The RPC

notation is similar to our system in the sense that we have a handler for each message. In this

sense, we consider the message type as the procedure name and the message handler as the logic

executed by the receiver of the RPC call.

143



Appendix A. Conventions for the notation of algorithms

In Algorithm A.1, we show an example containing the three primitives provided by the KBR layer.

We have adapted them to a remote procedure call in the following way:

restrictedBroadcastAsync : executes the remoteProcedureName procedure on each node be-

longing to the interval specified by parameter and which begin with node i.

routeAsync : executes the remoteProcedureName procedure on the node which is responsible for

identifier i.

route : executes the remoteProcedureNameSync procedure on the node which is responsible for

identifier i and stores the result of the remote call in response.

Notice that each remote procedure specification has a label from to identify the source of the RPC

in case the procedure needs this information. There are special cases where a RPC needs to return

different values to more than one node. In this case, the return statement is represented as follows:

return result toNode nodeIdentifier

In case the remote procedure only return only one value, it is sent by default to the invoker of the

remote procedure.

Algorithm A.1: Algorithm Example

1: procedure component.localProcedureName1(parameters)
2: response← component.localProcedureName2(parameters)
3: end procedure

4: procedure component.localProcedureName2(parameters)
5: restrictedBroadcastAsync k.remoteProcedureName(interval, parameters)
6: routeAsync k.remoteProcedureName(parameters)
7: response← route k.remoteProcedureNameSync(parameters)
8: return response
9: end procedure

10: procedure k.remoteProcedureName(parameters) from i
11: local computations
12: end procedure

13: procedure k.remoteProcedureNameSync(parameters) from i
14: local computations
15: return result
16: end procedure
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User Guide

Throughout this appendix, we introduce how to execute and test our system in different nodes (or

under the same machine) as well as introduce different parameters which can be modified within

the configuration file in order to modify the behaviour of our system.

B.1 Basic Configuration

The configuration implemented within our system is based on a simple properties file. These

properties are named by a property name and have an associated value. For example:

test.parameter param

This way, to access this property when implementing some module we may access it through the

Environment class in the following way:

String value = Environment.getProperty(‘‘test.parameter’’);

Now we have a string variable representing the value param.

We have implemented the configuration component in such a way that when initializing the system

we read a default configiguration file named config.properties which must be within the same

directory where the system is executed. If no file is present, the initialization process will fail.

Nevertheless, each property defined within a configuration file may be overriden by command line

argument (including the configuration file used which is indexed by the property config.file) in the

following way:
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> java -cp cms.jar ClassName property.n1 value1 property.n2 value2 ...

Table B.1 shows all the configuration properties with its allowed values and a brief description.

This would help the user to modify the configuration file and adapt to its necessities. There are

other properties not introduced here which were created in order to test and tune our system and

may rest unmodified to avoid unexpected behaviour.

Property Allowed Values Description

dht.replicationDegree 2k ∀k ∈ N Informs the system of the number of replicas
which will be within the system

dht.failedIntervalType dks/consensus Informs the system whether to use the dks de-
fault recovery mechanism or our technique re-
spectively

bind.ip string Hostname or ip (x.x.x.x) to bind on the local
machine

bind.port p ∈ [1024, 49151]1 Port number to bind on the local machine. If
port is equal to 0, a random free port is used

bind.idPolicy fixed/random Informs the system whether the user will spec-
ify the id within the ring or it may be assigned
randomly

bind.id i ∈ [0, 4294967295]2 ID of the node within the ring (only applicable
when bind.idPolicy is fixed)

boot.ip string Hostname or ip (x.x.x.x) to use as bootstrap-
ping node to join the ring

boot.port p ∈ [1024, 49151] Port number where the bootstrapping node lis-
tens to

boot.id i ∈ [0, 4294967295] ID of the bootstrapping node within the ring

bootNode boolean True if it acts as a bootstrapping node. False
otherwise.

Table B.1: Configuration properties provided to change the basic behaviour of our system.
1 This range is specified by the IANA. Special rights are not necessary to bind to these ports
2 This range is the current identifier space of the underlying overlay network
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B.2 Execution

The only one requirement to execute the system is, basically, the Java Virtual Machine 1.5.0 from

Sun. Other virtual machines will fail due to the use of specific features such as typified structures

or enumerations provided by the Sun JDK. We have packaged our system in such a way that each

library requirement is packaged within a single jar file (thanks to the onejar application [64]). As

long as our system is built upon the Java virtual machine, it is operating system independant so

it might be executed in whatever environment with a java virtual machine implementation (i.e.

Linux, Windows, etc).

For simplicity when building the overlay network, we have divided nodes in two different roles:

Bootstraping node : this node will create the overlay network and it will be the first to join it.

The rest of nodes will join the overlay through this node.

Joining node : this node will join an existing overlay node through a well known bootstraping

node.

This way, in the package directory of the CD included with this document, there is a single jar file

called cms.jar and two sample files called boot.properties and join.properties which initialized

the system depending on the role played by the node (bootstraping or joining node).

Despite it was not a primary component for this project, we have implemented a simple banking

command line interface by means of which the user could interact. This command line interface

has been implemented in order to carry out our tests and to exemplify how the Currency Manage-

ment System works.

B.2.1 Localhost Setup

This section shows how several nodes may build an overlay within the same machine (that is,

binding to the localhost interface).

B.2.1.1 Bootstrap node

The first node to boot up is the bootstraping node. For this purpose, the user must execute the

following code:

java -jar cms.jar config.file boot.properties
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This will raise the following text within the console where the above command was executed:

*********************************************

* Welcome to the Currency Management System *

*********************************************

Credentials for sysadmin: sysadmin

[BOOT] NodeID: 0

[BOOT] WebID: http://127.0.0.1:3435/info/0/0/0/2169371122624172466

Usage:

openAccount [Credentials]

closeAccount [ID] [Credentials]

queryAccount [ID] [Credentials]

depositFunds [ID] [amount] [sysAdminCredentials]

transferFunds [srcID] [dstID] [amount] [Credentials]

exit

The lines beginning with the [BOOT] text are information referring the current node being ex-

ecuted. They specify the NodeID assigned as well as a web interface provided by DKS which

provides information about current neighbours and its routing table. Moreover, increasing by one

the port used in the web interface, a new web page interface is provided by us showing current

storage information within this node (number and size of items which the node is responsible to

store and replicate as well as information about the stored objects themselves). We encourage

the reader to use those interfaces to navigate the overlay network once some accounts have been

created and modified.

Our web interface shows the following information once four accounts have been modified and a

transfer of Funds have been performed (for each account, its associated transactional object and

state object are stored, See Figure B.1).

B.2.1.2 Joining Node

Subsequent nodes willing to join the overlay will do it through the bootstraping node boot before.

It is a simplicity decision, nevertheless each node might join through every node already belonging

the overlay network. For this purpose, the user must execute the following code:

java -jar cms.jar config.file join.properties
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Besides the same console messages as the boot node, a new message will be shown informing that

some items has been transferred to the new joining node resembling this one:

[WARNING][org.kth.dks.dks_marshal.ObjectAdapter]

edu.upc.cnds.cms.transactionalLayer.TransactionalLayerImpl.

intervalJoined(TransactionalLayerImpl.java:202): TODO! intervalJoined...

[start:0 end:2422112333]

Now the overlay is builded upon two nodes. Subsequent nodes will increase the number of nodes

within the overlay balancing the load of managing such stored items.

Figure B.1: Simple Web Interface of the Mutable Consistent DHT Layer. The General Information part
shows the number and size in KB of items stored as primary replica and as backup replica. The Data Storage
part shows each object stored presenting the following information in the same order: ID, Timestamp,
ClassName of the object stored, String representation of the object -call to the toString() method-.
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B.2.2 Distributed Setup

This section shows how different overlay nodes could build an overlay distributed upon several

machines connected by whatever mechanism (internet, LAN, etc.). For that purpose, assume we

have n numbered in the range [1,n] with ip addresses of the form 192.168.2.n. It is an arbitrary

configuration usefull to understand the procedure and may be replaced by whatever real configura-

tion. Number 1 will be used by the bootstraping node. The rest of numbers will represent joining

nodes.

For the distributed setup, the procedure is the same as in the localhost setup by overriding some

configuration parameters to point to the correct interface as long as the configuration files provided

binds to the localhost interface.

This way, the command to execute in the case of the bootstraping node is:

java -jar cms.jar config.file boot.properties bind.ip 192.168.2.1

In the other hand, the command to execute in the case of the joining nodes is:

java -jar cms.jar config.file join.properties bind.ip 192.168.2.n

boot.ip 192.168.2.1

where n is the number assigned to each joining node to construct its own IP. The rest of properties

defined in the configuration file helps us to build it in an easy way. Nevertheless, the user might

want to override some parameters and setup its own configuration. In this sense, there are some

parameters that are mandatory in order to be able to build the ring (no matter if they are provided

by the configuration file or by command line). These are shown in Table B.2.

Role Mandatory Properties

Bootstraping Node bootNode[true], bind.ip, bind.idPolicy, bind.id, bind.port

Joining Node bootNode[false], bind.ip, bind.idPolicy, bind.id, bind.port,
boot.ip, boot.id, boot.port

Table B.2: Mandatory properties for building the overlay.

B.2.3 Playing with it

Once the overlay is set up in whatever form, the commands shown can be executed in order to

perform transactions. Some consideration to take into account:
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• the Credentials parameter must be a simple string without spaces. The ID of the account

associated will be constructed with the hash of this string.

• the Credentials of each operation is referred to the string used to create the source account

of the operation.

• the operation depositFunds may only be executed by the sysAdmin actor of the CMS. In

this sense, we provide a simple system administrator credentials which is represented by the

string sysadmin.

Now, the user can create, modify and delete whatever account from whatever node belonging to

the overlay. In other words, users may perform modifications to one account from one node and,

subsequent queries from whatever other node, will lead to consistent results. Notice that each

account is created with no credits so the first operation to be made is depositFunds to one account

to create the initial virtual currency.
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Glossary

ACID : Acronym for Atomicity, Consistency, Isolation and Durability. Four desirable properties

when performing transactional operations in database related systems.

Actor : using UML notation, it is is something or someone who supplies a stimulus to the system.

An actor cannot be controlled by the system and is defined as being outside the system. It

is often thought of as a role, rather than an actual person. A single person in the real world

can be represented by several actors if they have several different roles and goals in regards

to a system.

AETIC : Acronym for Asociación de Empresas de Electrónica, Tecnologı́as de la Información

y Telecomunicaciones de España. Its main objective is to promote the TI sector, specially

with the added value services.

API : Acronym for Aplication Program Interface. External source code interface provided by

every component to deliver its functionalities to the rest of components. More concretely, it

is the set of methods, functions or procedures provided by a component.

CMS : Acronym for Currency Management System.

Computer Cluster : It is a group of tightly coupled computers that work together closely so that

in many respects they can be viewed as though they are a single computer. The components

of a cluster are commonly, but not always, connected to each other through fast local area

networks.

DHT : Acronym for Distributed Hash Table. As its name suggests, it is a hash table which is

distributed upon some cooperating nodes.
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DKS : Acronym for Distributed K-ary System. Peer to peer middleware based on a structured

p2p overlay network which offers some interesting properties compared with other DHT

based implementations.

GRIMP : Acronym for GRId4All Market Place. It is an structure where the generic components

that are fundamental to implement market resource allocations systems are identified. This

component is specific for the Grid4All architecture.

Infrastructure : It is, generally, a set of interconnected structural elements that provide the

framework supporting an entire structure. In other words, the infrastructure should be un-

derstood as external components not provided by the system itself which their use helps the

system to to achieve its objectives.

Item : It is the minimum stored object within DHTs. Basically, it is a {key,value} pair which helps

the DHT to store it at the responsible and replica nodes.

JDK : Acronym for Java Development Kit. Set of programs and libraries for Java based program

development.

KBR : Acronym for Key Based Routing. Substrate of many p2p structured overlay networks

which is based on delivering messages to a node responsible for a given identifier.

Node i : Abbreviation of the sentence Node wich is responsible for identifier i. As long as the

KBR routes a message to the node responsible for a given identifier and identifier respon-

sability depends on the dynamicity of the system, the system based on the KBR does not

matter about which physical node is responsible for an identifier at a given time.

Overlay Network : computer network which is built on top of another network. Nodes in the

overlay can be thought of as being connected by virtual or logical links, each of which

corresponds to a path, perhaps through many physical links, in the underlying network. i.e

a p2p network.

P2P : Acroynm for Peer-to-Peer. Overlay network build upon several nodes (peers) which allow

to share wahtevet kind of resource to the community.

PKI : Acronym for Public Key Infrastructure. In cryptography, PKI is an arrangement that binds

public keys with respective user identities by means of a certificate authority (CA). The

user identity must be unique for each CA. This is carried out by software at a CA, possibly

under human supervision, together with other coordinated software at distributed locations.

For each user, the user identity, the public key, their binding, validity conditions and other

attributes are made unforgeable in public key certificates issued by the CA.
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Replica : It is a copy of the original object. Replicas are often used for replacing the original one

in case the original is not available. It is a technique in distributed system to enable high

data availability.

Routing Protocol : Routing protocols allow different computer networks to communicate. Rout-

ing protocols specify the set of rules that help the overlay node to pass information among

themselves on the topology of the overlay network.

Routing Table : A routing table is a table on a router that is used to store that router’s informa-

tion on the topology of the network immediately around it. It is used to direct forwarding

of packets by matching destination addresses in a packet to the network paths in routing

table used to reach them. The construction of routing table is the primary goal of routing

protocols.

RTT : Acronym for Round Trip Time. It is the elapsed time for a message to transit between two

nodes of a network.

Timeout : A specified period of time that will be allowed to elapse in a system before a specified

event is to take place, unless another specified event occurs first; in either case, the period is

terminated when either event takes place.

VO : Acronym for Virtual Organization. Set of users which wants to share their own resources

to the organization they belong in order to achieve enough computing resources to carry out

their common objectives.

WSRF : Acronym for Web Services Resource Framework. A web service by itself is nominally

stateless, i.e., it retains no data between invocations. This limits the things that can be done

with web services. WSRF provides a set of operations that web services may implement to

become stateful.
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