
Analyzing the Performance of a Multithreaded Application Server and its
Limitations in a Multiprocessor Environment

Josep Oriol Fitó Jordi Guitart
fito@ac.upc.edu jguitart@ac.upc.edu

Computer Architecture Department - Technical University of Catalonia
C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034 Barcelona (Spain)

Abstract

The presence of application servers is more common
than ever due to the quick evolution of e-Business and e-
Commerce services. These software engines are able to host
multiple web applications, which could receive dissimilar
workloads, in a unique server machine. This means that
diverse web applications have to share the limited server’s
resources. Furthermore, those applications differ in both
resource requirements and performance goals. In order
to properly exploit their capabilities, a good and accurate
study must be performed to better understand the benefits
and limitations of hosting various types of web applications
in a single server.

In this paper, we present an in-depth study of the
performance of an application server in a multiprocessor
environment which process representative workloads of
nowadays. We evaluate its performance using a fine Web
server benchmark, SPECweb2005, which characterize
three real web usage patterns. For each case, we expose
the obtained results from the performed experiments on
multithreaded java application server. Specifically, we
have performed a study of the server’s scalability in this
multiprocessor environment when running with different
number of processors. Afterwards, we examine which are
the underlaying bottleneck resources for the server’s per-
formance for each one of the afore-mentioned workloads.

Keywords: application server, multiprocessor environ-
ment, performance scalability, SPECweb2005, workload
characterization

1 Introduction

Nowadays, the Internet trend towards “everything-as-a-
service” has an obvious side effect: the computing capac-
ity is required in ‘The Cloud’, the server’s area ([18], [20]).
Moreover, is expected that these servers provide a multi-

tude of disparate services at the same time. In turn, these
services could be provided by dynamic web applications
that are hosted on those application servers. This appli-
cations, which coexist in a single machine, have dissimi-
lar both performance targets and Service Level Agreements
(SLAs). Furthermore, the most important for us is that they
also differ in terms of resource requirements. For this sim-
ple reason, and pursuing the same objective that the well-
known consolidation strategy, it is necessary that these ma-
chines are not underutilized servers for two motives. Firstly,
to reduce the number of servers needed to provide the afore-
mentioned services. Secondly, with the aim to improve the
energy efficiency of the IT equipment. This will result in
reducing the wasted energy and consumed power and, con-
sequently, in reducing system costs. In fact, these two ob-
jectives are gaining strength in the design, construction and
operation of servers.

Following these goals, a good study of the capabilities of
the target machine in question is essential and will be very
useful. It can help us to better understand how the target
server acts in front of this type of workloads. As well, it
could be used to find the more adequate consolidation strat-
egy that we should perform if we take into account both re-
sources demands and performance that is expected of it.

In the case that occupies us, the application servers, we
must evaluate its behavior considering the most current us-
ages. Hence, in this scenario, is very convenient to use the
SPECweb2005 benchmark [15]. It has been designed with
three different workloads that characterize the most com-
mon usage of Web users of today and tomorrow: Banking,
E-commerce and Support, which emulate an online bank-
ing, an e-commerce site and a vendor support site providing
downloads, respectively.

This paper presents a deep study around the performance
of an application server which receives representative work-
loads of today. We use Apache Tomcat [2] as the multi-
threaded java application server to deploy three web appli-
cations corresponding to each type of workload. We show
the achieved results from the performed tests. Furthermore,

1



we explain which are the interesting performance metrics
that can be extracted from this and how we should treat it to
obtain graphics with enough representativeness.

Recently, the scalability of web servers has become a key
issue in order to support the maximum number of concur-
rent clients demanding dynamic content. For this reason,
we perform a study of the server’s scalability in a multipro-
cessor environment when running with different number of
processors: from one to four processor units.

Additionally, we present an examination about what are
the underlaying hardware resources that limits the perfor-
mance of the server. Therefore, the main goal is to detect
what are the resource bottlenecks in this multiprocessor en-
vironment for each one of the SPECweb2005 workloads.

The rest of the paper is organized as follows: in section
2 we discuss about the motivation of this work and the pre-
vious research related with it. Section 3 presents the exper-
imental environment that we used. Section 4 expounds the
evaluation of the obtained results from the performed tests
and describes the analysis of the performance bottlenecks.
Finally, Section 5 presents the conclusions of this paper and
introduces the future work.

2 Motivation and Related Work

The utilization of benchmarks is very common, useful
and necessary to evaluate the performance of hardware and
software components/systems. In fact, a benchmark is the
act of running a computer program in order to evaluate the
relative performance of an object, normally by running a
number of standard tests against it. The most important fea-
ture is that benchmarks are designed to act like a particular
type of workload on a component or system. There are many
types of benchmarks, but the most widely-used are synthetic
benchmarks and application benchmarks. The first one con-
sists in specially created programs that impose the workload
on the desired component. The other one, called application
benchmarks, run real-world programs on the target systems.
Hence, application benchmarks usually give a much better
measure of real-world performance on a given system. In the
other hand, synthetic benchmarks are convenient for testing
individual components, like a hard disk or networking de-
vice. Due to this great variety and possibilities, the use of
benchmarks is highly prevalent.

Nowadays, the benchmarks created to evaluate the per-
formance of web and application servers are gaining a re-
markable protagonism. Here, in this paper, we use what
we consider the best benchmark to evaluate these servers:
SPECweb2005. We have found that there are some works
dealing with SPECweb2005’s issues.

Hariharan and Sun [12] make a brief but thorough sum-
mary about SPECweb2005 and its main characteristics.
They present the workloads one by one and give the reader
many technical aspects of them.

Mahadevan [14] utilizes a network processor for

application-level offloading in order to improve Web server
performance. He describes the working of Web servers and
proxy servers, and their performance parameters. With the
aim to demonstrate the improvements achieved, he provides
a performance evaluation between this approach and the tra-
ditional host-only approach. This evaluation was performed
using the SPECweb2005 benchmark.

Warner and Worley [19] examine various systems using
ISS as the web server and PHP to assist dynamic content.
This analysis is performed using SPECweb2005 benchmark
and they provide results for a representative “real world”
web server configuration. Nevertheless, they offer a com-
parison between these servers based on the SPECweb2005
overall score and overlook the most significant performance
metrics that the benchmark gives us, such as throughput and
response time.

On the other hand, evaluating the bottleneck resources for
an application or web server running in a given environment
is a task that have been already performed in some works.
Carrera et al. [6] present the eDragon environment: a re-
search platform created to perform complete performance
analysis of new Web-based technologies. In fact, they de-
scribe the design and implementation of this platform and
highlight some of its most important capabilities. Then, and
using this platform, Guitart et al. [7] present a characteriza-
tion of secure dynamic web applications scalability. In fact,
they divide the work in two parts. First, they measure the
vertical scalability of the server running with different num-
ber of processors. Second, they perform an in depth analysis
of the server behaviour using the afore-mentioned platform.
This analysis help them to determine the causes of the server
overloading.

Veal and Foong [17] identify the major bottlenecks to
scalability for a reference server workload on a commercial
server platform, that is, SPECweb2005 Support workload.
Their results show that the operating system, TCP/IP stack,
application exploited parallelism, load imbalance and shared
cache affected performance little. Leaving aside these po-
tential bottlenecks, they determined that performance scal-
ing was limited by the capacity of the address bus, which
became saturated.

Further, Bosque et. al [4] present a work in which the
performance of Apache web server is characterized on mul-
ticore chips using SPECweb2005. Their conclusions are
around limitations related with data caches and main mem-
ory accesses.

Amza et al. [1] describe three benchmarks for eval-
uating the performance of Web sites with dynamic con-
tent. Furthermore, they present a performance evaluation
of their implementations on contemporary commodity hard-
ware. Their evaluation is focused on finding and explain the
bottleneck resources in each benchmark.

Despite the above contributions, we think that it is
interesting to provide an article that deepens in using
SPECweb2005 and shows key performance metrics and as-

2



sessments that can be extracted from it. Additionally, this
paper contributes both to characterize the SPECweb2005
workloads and to find their resources demands in a multi-
processor environment.

3 Experimental Environment

We can highlight the following three elements that make
up the experimental environment.

3.1 Tomcat Servlet Container

We use Apache Tomcat v.6.0.14 [2] as multithreaded java
application server. Apache Tomcat is an open-source servlet
container developed at the Apache Software Foundation. It
implements the Java Servlet 2.5 and the JavaServer Pages
2.1 (JSP) specifications from the Java Community Process,
and makes available a Java HTTP web server environment.
As is well-known, it is an interesting context for develop and
deploy web applications and web services. It can operate as
standalone server, serving both static and dynamic content,
or as a complement for a web server, offering only dynamic
content. In order to meet SPECweb2005 requirements, we
use Tomcat as standalone server (i.e web server). Initially,
we have configured it with two top-level entry points, non-
SSL and SSL HTTP/1.1 connectors, with a maximum num-
ber of 100 HttpProcessors in the shared thread pool and a
connection timeout of 10 seconds. In fact, it is important
to note that this timeout dynamically varies depending on
the input load received by the server. Finally, we have stat-
ically deployed three web applications which are used by
SPECweb2005.

3.2 SPECweb2005 Benchmark

SPECweb2005 [15] is the next-generation SPEC bench-
mark for evaluating the performance of World Wide
Web Servers. Like its predecessors, SPECweb99 and
SPECweb99 SSL, SPECweb2005 continues the SPEC tra-
dition of giving Web users the most objective and represen-
tative benchmark for measuring a system’s ability to act as a
web server. It is know that the usage characteristics of web
applications are changing and that is why it is necessary to
update the benchmarks to reflect them. For this reason, the
SPECweb2005 benchmark includes many sophisticated and
state-of-the-art enhancements to meet the modern demand
of Web users of today and tomorrow:

• User think time between page requests is now modeled.

• Client-side flexibility has been greatly increased.
Workload’s modifications can be easily made via con-
figuration files.

• The clients send conditional GETs requests to simulate
browser caching effects.

• It was written in Java in order to give the users a cleaner
and portable code.

• The application server dynamic content is implemented
in PHP and JSP.

His working method is to emulate users sending browser
requests over broadband Internet connections to a web
server. In fact, it simulates a web server using dynamic web
pages and a backend database. It is based on downloading
pages, which are dynamically created files, followed by re-
quests for embedded images within the files. Furthermore,
it provides three new workloads based on analysis of web
server logs and studies of sites from the web browser side.
This is so due to the high variability in the security require-
ments and differences in the dynamic content in various web
server workloads. As a result, it is becoming impossible to
characterize the web performance of any server with any sin-
gle workload. Next, there is a brief explanation of each of
those already mentioned workloads:

1. Banking, based on Internet personal banking. Con-
sequently, the typical requests of an online bank were
simulated, such as login/logout, bank balance inquiry,
money transfers, look at and modify the user profile,
etc. All of these requests are based on SSL. Since in the
first (and mandatory) transaction an SSL connection is
established, all the above mentioned requests are based
on SSL. Furthermore, the possible operations include
both POST and GET HTTP methods. Continuing in-
side the design of this workload, it is important to note
that it is the only one in which the session timeout is
implemented. Specifically, about 20% of the incoming
users do not logout, thus allowing the session timeout.
Besides, and after each page request, there is a like-
lihood that the user goes through a think time, which
averages about 9.98 sec (data extracted from [16]).

2. E-commerce, based on the workload characteristics of
an e-commerce site. It was designed to simulate a Web
server that sells computer systems; this includes allow-
ing users to search, browse, customize, and purchase
products. In fact, a customer visiting the emulated site
passes through three distinct phases. The first is when
the customer browses the website, looking for a prod-
uct. The second is the customization phase, were the
end user customizes the desired product. Finally, if the
customer wants to check out or buy the product, then
he must use requests based on SSL. For this reason,
and unlike the above explained workload, only about
two thirds of the user sessions use SSL connections. As
well, as in the case of Banking workload, the transition
between states is driven via a Markov Chain and user’s
think time is used in many user sessions. To conclude,
it is valuable to note that in this workload are used both
HTTP and HTTPS connections.

3



3. Support, based on the characteristics seen in sites that
were used to download patches for computer support.
Typically, this downloads are very large and the pur-
pose of this workload is to stress the server I/O. This
workload does not use SSL connections. The web
client emulated enters in the system, searches for the
right patch file and then begin to download this file.
Also, the think time value used for this workload is
about 5 seconds.

Figure 1: Logical components of SPECweb2005

Besides, and talking about the benchmark architecture, it
has four major logical components as illustrated in Figure 1
(Source: [16]):

• Client. The benchmarks clients run the application
program that sends HTTP requests to the server and re-
ceives HTTP responses from this one. This application
program has been written in Java for portability.

• Prime client. This is the component that initializes and
controls the behavior of the clients. Therefore, its main
operations are to run initialization routines against web
server and BeSim (Back-End Simulator), and collects
and stores the results of the benchmark tests. It may be
on the same physical system as one of the clients.

• Web server or System Under Test. Is the collection
of hardware and software that handles the requests is-
sued by the clients. Note that the application server is
also called System Under Test (SUT) and henceforth
we will use this terminology.

• Back-End Simulator. It is the logical component that
is intended to emulate a back-end application server
that the web server must communicate with in order
to get back specific information needed to complete an
HTTP response.

3.3 Hardware and Software Platform

In order to reproduce the desired situation with the ut-
most reality, we decided to use a total of up to 9 machines.
The Tomcat application server, also known as System Un-
der Test (SUT), runs on a 4-way Intel Xeon 3.16GHz with

16 GB of RAM memory. This application server was en-
veloped in the Sun Java Virtual Machine for Linux and the
initial and maximum size of Java heap was set up to 1 GB.
Moreover, Tomcat sends requests to the BackEnd Simulator
(BeSim) and receives response back. This simulator, which
is encapsulated into an Apache Web server, runs on a 2-way
Intel Xeon 2.4GHz with 2 GB RAM. Another important log-
ical component is the prime client. It runs, along with a
simple client, on a machine like the previous one. And, ad-
ditionally, we use five more clients (six in total) that send
HTTP/HTTPS requests to the server. These clients run on
the five remaining machines, which have the following CPU
and memory capacity: 4-way Intel Xeon 1.4GHz with 2 GB
RAM, 4-way Intel Xeon 3GHz with 4 GB RAM, 4-way In-
tel Xeon 2.66GHz with 2GB RAM and, lastly, two equal
machines with 2-way Intel Xeon 2.4GHz alongside 2GB of
RAM memory. All of this machines are connected using a
1Gbps Ethernet interface and run Linux Operating System
(with kernel 2.6).

For each one of the performed tests, the benchmark was
configured to emulate the desired workload expressed in
number of simultaneous user sessions. Then, all the clients
emulate these simultaneous sessions against the SUT during
a run of 30 minutes and three times per test.

4 Evaluation

In this section we present the evaluation of the obtained
results. We represent the server’s performance using diverse
metrics, such as throughput, response time and Quality of
Service (QoS). Firstly, we perform a characterization of the
SUT’s scalability for each workload, one by one. Later, in
the second part, we present an examination around the bot-
tleneck resources that limit the performance of the server.

4.1 Scalability of the Server’s Perfor-
mance

In this first part we describe the scalability charac-
terization of the SUT when receiving each one of the
SPECweb2005 workloads in an individual way. We per-
form a vertical scalability of the multithreaded web server
when running with different number of available processors,
thereby determining the consequences of allocating more
processors to it. As can be seen in the upcoming graphics,
the caused effects are different in each of the workloads and
later we will try to demonstrate and justify this fact.

The information obtained after the completion of each
test allows us to extract the most representative metrics re-
garding with the performance of the server:

• Throughput. It express the ratio of requests per second
(rps) served by the server.

• Response time. It refers to the amount of time server
takes to return the results of a request to the user.

4



• Quality of Service. It comprises requirements on all
the aspects of a connection, such as service response
time, frequency response, etc.

4.1.1 Throughput

Figures 2, 3 and 4 show the Tomcat throughput for Bank-
ing, E-commerce and Support workload, respectively. The
throughput is expressed in requests per second, and as a
function of the simultaneous user sessions within the server
when running with different number of processors (one to
four).

 0

 50

 100

 150

 200

 2100 1900 1700 1500 1300 1100 900 700 500 300 100

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

Banking throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 2: Banking throughput when running with different
number of processors

 0

 50

 100

 150

 200

 250

 300

 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

E-commerce throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 3: E-commerce throughput when running with dif-
ferent number of processors

All the Banking workload’s requests are based on secure
connections. For this reason, and considering the probable
hypothesis that the CPU is the critical resource, we can see
how the server’s throughput scale according to the number
of available CPUs. Nevertheless, it does not scale linearly

 0

 50

 100

 150

 200

 3300 2900 2500 2100 1700 1300 900 500 100

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

Support throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 4: Support throughput when running with different
number of processors

according to the number of allocated CPUs. For instance,
considering 1500 simultaneous user sessions, the through-
put obtained with 1 CPU is 91.5 rps and with 4 CPUs is
203.5 rps. Thus, it supposes an escalation of 4x in the crit-
ical resource and 2.2x in the performance. Further study is
needed to see what is really happening.

Taking into account the characteristics of the E-
commerce workload, in terms of SSL connections, this one
is not fully based on this kind of connections. In fact, a high
percentage of requests (90%) are performed in a secure con-
text. For this cause, the shape of the Figure 3 is similar to
Figure 2, but the performance takes longer to differentiate
between having or not more CPUs.

The last situation, Support workload, is also quite par-
ticular. Looking at the scalability of the server, in terms of
CPU resource, it looks like that this resource may not be
critical as in the other two cases. In fact, with a single CPU
the performance seems that is limited by it. On the other
hand, with 2, 3 or 4 CPUs the throughput is very similar.
Afterwards, in the next section, we present an examination
which allows us to detect what is the critical resource.

As a summary, Table 1 shows the maximum achievable,
and non-comparable, throughput for each of the workloads,
differentiating between 1, 2, 3 or 4 CPUs allocated to the
System Under Test:

Maximum achievable throughput (rps)
CPUs Banking E-commerce Support

1 92.2 109.4 111.8
2 158.2 200.6 197.7
3 192.2 272.2 202.5
4 203.5 297.6 211.9

Table 1: The maximum achievable throughput for each of
the SPECweb2005 workloads

5



4.1.2 Response Time

Another typical metric that the community use to quantify
the performance of servers is the average response time: the
time taken to attend the client request and send the response
to it. Notice that we have used the second as the time unit
to express this metric. Also, and like the above metric, we
represent the average response time for each case, illustrat-
ing the performance obtained with different processor units
allocated to Tomcat.

In fact, the obtained graphics regarding with this met-
ric give us a similar information than the graphics about
throughput. The next Figures 5, 6 and 7, show the server’s
average response time as a function of the number of simul-
taneous user sessions within the server when running with
different number of processors. In every one of the work-
loads, it is possible to be seen that the response time in-
creases, more or less exponentially, when the server is over-
loaded. In fact, the response time begins to grow in an unde-
sirable way at the same point where the throughput begins
to decline.

 0

 5

 10

 15

 20

 2100 1900 1700 1500 1300 1100 900 700 500 300 100

s
e
c
o
n
d
s

Number of simultaneous sessions

Banking Response Time 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 5: Banking response time when running with differ-
ent number of processors

From here we can extract one decisive conclusion: if we
want to give good sensations to users, we can not allow that
the server’s response time is inside the range of exponen-
tial growth. Accordingly, we have the option, for example,
to implement an overload control strategy in order to avoid
overloading the server. This strategy is usually based on
connection differentiation and an admission control mecha-
nism, as Guitart et. al did in [8] and [9].

What is interesting about this metric is that it has more
influence with the clients, because the response time is per-
ceived by them. This fact does not happen with the overall
throughput of the server. Therefore, the response time of-
fered is a significant metric to keep in mind when we are
optimizing the performance of a given application server.

Also is noteworthy that response time is a very impor-
tant point in SLA contracts. In fact, the common metrics of

 2

 4

 6

 8

 10

 12

 14

 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

s
e
c
o
n
d
s

Number of simultaneous sessions

E-commerce Response Time 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 6: E-commerce response time when running with dif-
ferent number of processors

 6

 8

 10

 12

 14

 16

 18

 20

 3300 2900 2500 2100 1700 1300 900 500 100

s
e
c
o
n
d
s

Number of simultaneous sessions

Support Response Time 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 7: Support response time when running with differ-
ent number of processors

these service contracts include both Average Speed to An-
swer (ASA) and Time Service Factor (TSF), which are an-
other metrics extremely related with server’s response time.

4.1.3 Quality of Service

It is one of the most notable changes in SPECweb2005 from
its predecessors: the change from connection-based QoS to
web page-based QoS. For all except the Support workload’s
“download” request, a time-based QoS is used. Specifically,
QoS is based on the amount of time that elapses between a
web page request and the receipt of the complete web page,
including any image files. For the support workload’s down-
load state, a more appropriate byte rate-based QoS is ap-
plied. Also, the output results of any SPECweb2005 test has
the called “Aggregate QoS compliance”. It consists in calcu-
late the total amount of requests (expressed as a percentage
of the requests) that are within each of three different ranges:

6



good, tolerable and fail. These percentages give us a quan-
titative overview of what level of QoS has been fulfilled.

The used procedure by SPECweb2005 to calculate the
implemented QoS criteria is the following: for each page
requested by a load-generating thread of the benchmark, a
timer is launched before sending the page request to the
server. Subsequently, it is stopped as soon as the last byte of
the response for that page is received. Then, valid responses
will have their aggregate page response time checked against
their respective QoS values of the workload, and the value
for the corresponding QoS field (good time, tolerable time
and fail time) will be incremented. At the end of the run, the
prime client aggregates the run data from all the clients and
determines whether the run met the benchmark QoS criteria.
Table 2 clarifies the time limits (in milliseconds) of each of
the considered ranges:

QoS criteria
Banking E-commerce Support

Good time < 2000 < 3000 < 3000
Tolerable time < 4000 < 5000 < 5000

Fail time > 4000 > 5000 > 5000

Table 2: The time limits (in milliseconds) of every QoS
range of SPECweb2005

With the obtained results from the tests, we have been
able to represent the following nine graphs (Figures 8, 9
and 10) that illustrate the percentage of users requests that
are within the already commented bounds. Once again, we
present the results one by one for each workload. Specif-
ically, we present the graph corresponding to the amount
in each hundred requests that have been answered within a
‘good compliance’. In the same way, we display the percent-
age of those that have been replied in a ‘tolerable compli-
ance’, and the requests percentage whose the response time
needed by the server has surpassed the last boundary (‘fail
compliance’).

These figures allow us to know the number of simulta-
neous user sessions that the server can respond if we want
that a percentage of requests X are answered in less time
than Y. Nowadays, this is crucial for the hosting companies
since this type of fulfillment is, probably, the most important
clause of SLA contracts.

4.2 Performance Bottlenecks of the Server
for each Workload

Notice that, for a given number of processors, the per-
formance of the server increases linearly with respect to the
simultaneous sessions until a determined number of it hit
the server. This points are known as knee points. This sec-
tion presents a detailed analysis about the limitations of the
server in front of the SPECweb2005’s workloads. There are

 0

 20

 40

 60

 80

 100

 2100 1900 1700 1500 1300 1100 900 700 500 300 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Banking - good compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 2100 1900 1700 1500 1300 1100 900 700 500 300 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Banking - tolerable compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 2100 1900 1700 1500 1300 1100 900 700 500 300 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Banking - fail compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

Figure 8: Banking QoS compliance when running with dif-
ferent number of processors

7



 0

 20

 40

 60

 80

 100

 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

E-commerce - good compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

E-commerce - tolerable compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

E-commerce - fail compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

Figure 9: E-commerce QoS compliance when running with
different number of processors

 0

 20

 40

 60

 80

 100

 3300 2900 2500 2100 1700 1300 900 500 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Support - good compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 3300 2900 2500 2100 1700 1300 900 500 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Support - tolerable compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

 0

 20

 40

 60

 80

 100

 3300 2900 2500 2100 1700 1300 900 500 100

P
e
r
c
e
n
t
a
g
e
 
o
f
 
r
e
q
u
e
s
t
s

Number of simultaneous sessions

Support - fail compliance QoS 

1 CPU 2 CPU 3 CPU 4 CPU

Figure 10: Support QoS compliance when running with dif-
ferent number of processors

8



several Unix monitoring tools that both gives us helpful in-
formation and allows us to monitor the performance of any
application when it runs on top of any UNIX system. The
goal of this analysis is to detect the causes of the server’s
performance degradation when running with different num-
ber of processors, that is, identify the bottleneck resource for
each SPECweb2005 workload.

4.2.1 Tuning Complexity of Multithreaded Web
Servers

As we already said, we opted for using a multithreaded Java
web server. After performing the foregoing study of the
server’s scalability (presented in Section 4.1), we found that
the configuration of the web server prevents the performance
scalability of it. As you can see in Figures 2, 3 and 4, the
throughput of the server does not scale according with the
allocated processor units. We have checked the machine’s
resources utilization and in many cases we found that all the
resources are underutilized. For this reason, we pose the
possibility that the configuration of the multithreaded web
server could be a potential performance bottleneck. Actu-
ally, we checked that configuring this type of web servers
is a quite hard task. In addition, there are a lot of parame-
ters that affect its performance. As Guitart et al. [11] [10]
demonstrate, tuning these configuration parameters of appli-
cation servers is a complex task to deal with because of the
large complexity of this environment.

In fact, in [3] the authors show the complexity of opti-
mally configuring this kind of servers for different work-
loads. They performed an exhaustive study around two key
configuration parameters: the keep-alive timeout and the
number of worker threads that are who process the incom-
ing users requests. There are two main conclusions which
we also have checked:

1. The optimal configuration of a multithreaded applica-
tion server, that is, the ones with the server have better
performance, is made up by one worker thread per user
connection and an infinite timeout. Note that a typi-
cal and non-optimal configuration has some few hun-
dreds of workers threads and a timeout of several sec-
onds that the web server adapts appropriately with the
input load. We found the afore-mentioned “optimal”
configuration but it is clear that this is not an scalable
setup and is highly dependent on the processed work-
load. In fact, we found that it is only viable when the
server is not overloaded. For this reason, the data il-
lustrated in this section has been obtained by modify-
ing the server configuration for each test. Therefore,
we configured the server with one thread per user con-
nection until this setup was not feasible because of the
overhead introduced by the creation and synchroniza-
tion of them. From this point, we kept the setting with
the possible maximum worker threads given the char-
acteristics of both the analyzed machine and the Web

application in question.

2. The hybrid application server architecture [5] (multi-
threaded and event-driven) is a feasible solution to sim-
plify the web server tuning and, thus, we can obtain
better performance.

We want to note that, although it is obvious that changing the
configuration of the server depending on both the load and
the Web application is not feasible in a real environment,
we have used this idea in order to avoid that this become
the performance bottleneck. Thus, we were able to reach
our purpose: what is the underlaying resource bottleneck for
each SPECweb2005 workload without having consideration
about problems that depend on the type of server.

4.2.2 Banking Workload

This workload is mainly characterized by secure connec-
tions between the server and its clients. Because of the use
of SSL protocol, which includes a handshaking method with
high computational cost, is well known that the CPU is prob-
ably the resource bottleneck in secure scenarios. In order
to check this assumption, we have measured the utilization
percentage of this resource when the web server runs with
one to four processors and with different simultaneous user
sessions (Figure 11).

Indeed, from this Figure 11 we can conclude that the
CPU is the resource bottleneck for the SPECweb2005 Bank-
ing workload. As we increase the number of concurrent
users, the utilization of this resource grows until the max-
imum capacity of computation is reached. Then, the server
can not scale its performance. Notice that the scalability of
the server is not linear according with the number of pro-
cessor units available to it. This fact is because with 3 and
4 CPUs we could not scale the optimal configuration of the
server and, consequently, the overall performance does not
scale. Really, the CPU utilization remains high in this two
cases because of the threads management overhead.

4.2.3 E-commerce Workload

In the same manner as with the banking workload, we made
the hypothesis that the processor unit should be the limiting
resource in this case. Although this workload uses both non-
secure and secure HTTP connections, we have considered
the same assumption that in the Banking workload: the CPU
should be the resource bottleneck. Again we have checked
this assumption by monitoring the CPU utilization when the
web server runs with different number of processor units and
simultaneous user sessions (Figure 12).

Also we can affirm that the processor is the resource bot-
tleneck for the SPECweb2005 E-commerce workload. As in
the previous case, the scalability is not linear because from
a certain point (3200 simultaneous user sessions) we can not
scale the optimal server configuration.

9



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

Banking throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

 100

 75

 50

 25

 0
 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

%
 
o
f
 
u
t
i
l
i
z
a
t
i
o
n

Number of simultaneous user sessions

Banking CPU utilization 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 11: Web server throughput with ’optimal’ configura-
tion and the average CPU utilization for banking workload

4.2.4 Support Workload

This third workload is quite different from the two previous:
it was developed based on the characteristics seen in sites
that were used to download, upgrade and fix related patches
for computer support. Typically, these downloads are very
large. For this reason, and taking into account the charac-
teristics of this workload, we can predict that the possible
resource bottlenecks could be the disk (i.e. I/O operations)
or the network bandwidth. Once again, we have used some
useful Unix monitoring tools to analyze and detect which are
the special resource requirements of this workload. After a
few tests analyzing the disk usage, we discarded this option
and we centered in the network resource. Now we present
the network bandwidth utilization (Figure 13) for each test
case as we have done in the previous analysis.

As you can see, with two, three and four processor
units, the utilization of the network bandwidth is around
100% and this fact limits the performance of the server. In
the other hand, it is not the resource bottleneck with one
processor unit available to the web server. For this reason,
we have also checked the CPU utilization (Figure 13) and

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5000 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

E-commerce throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

 100

 75

 50

 25

 0
 5000 4700 4400 4100 3800 3500 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

%
 
o
f
 
u
t
i
l
i
z
a
t
i
o
n

Number of simultaneous user sessions

E-commerce CPU utilization 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 12: Web server throughput with ’optimal’ configura-
tion and the average CPU utilization for e-commerce work-
load

we can affirm that in the case of having only one CPU this
has became the resource bottleneck.

In addition to the analysis of these resource bottlenecks,
we have checked that many other resources are not limiting
the server’s performance in any case:

• First of all, we checked that the JVM heap memory is
never the resource bottleneck. Nevertheless, in the case
of the Banking workload we had to increase the amount
of JVM heap memory from 1GB to 2GB. In the others
two workloads is enough with 1GB.

• Also, the overall memory of the server’s machine is not
a limiting resource. In fact, it is obvious because the
amount of memory that the machine has is proportion-
ally larger than the computational resource.

• We could see that the BeSim system is not the bottle-
neck. If it were, there is an option to use multiple phys-
ical BeSim systems. We tried this option and it not
resulted in improved performance.

10



 0

 50

 100

 150

 200

 250

 300

 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

r
e
p
l
i
e
s
/
s

Number of simultaneous sessions

Support throughput 

1 CPU 2 CPUs 3 CPUs 4CPUs

 100

 75

 50

 25

 0
 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

%
 
o
f
 
u
t
i
l
i
z
a
t
i
o
n

Number of simultaneous user sessions

Support network bandwith utilization 

1 CPU 2 CPUs 3 CPUs 4CPUs

 100

 75

 50

 25

 0
 3200 2900 2600 2300 2000 1700 1400 1100 800 500 200

%
 
o
f
 
u
t
i
l
i
z
a
t
i
o
n

Number of simultaneous user sessions

Support CPU utilization 

1 CPU 2 CPUs 3 CPUs 4CPUs

Figure 13: Web server throughput with ’optimal’ configura-
tion; average network bandwith utilization and average CPU
utilization for support workload

• We tried to improve the overall performance by tuning
several configure parameters of the Web server which
emulates the Back-End Simulator. Once again, chang-
ing these configurations did not result in a remarkable
performance improvement.

• Also we have examined that the clients (and also de
prime client) are not overloaded during the performed
tests.

5 Conclusions & Future Work

In this paper we have performed an exhaustive study of
the performance of an application server in a multiprocessor
environment with typical workloads of today. We get the
measure of its performance using the next generation SPEC
benchmark for evaluating the performance of World Wide
Web servers: SPECweb2005. Firstly, we present the inter-
esting metrics that the benchmark gives us, such as through-
put, average response time and the offered quality of service.
We represent the obtained results as a function of the simul-
taneous user sessions within the server when running with
one to four number of processors. With it, we can know the
behavior of the server in front of diverse workloads as well
as their resources requirements. Furthermore, we use some
Unix performance tools in order to better comprehend these
critical resources demands which limit the scalability of the
server’s performance.

We endorse that a proper study, like the presented one, is
primordial to know the performance of a server in front of
characteristic workloads of nowadays. Moreover, it allows
us to detect and be aware of the conditions that overload this
server. This fact will be very useful in order to prevent this
undesirable situation.

As a future work we are considering two different re-
search directions: one that works in the same environment
and the other that contemplates a different context. The first
one would be focused on apply some ideas to the existing
work in order to host and offer, at the same time, different
services while maintaining a given Service Level Agreement
for each one of them. In addition, we are considering to per-
form a similar evaluation around the performance scalability
of the server, like the presented in this work, but using the
hybrid application server architecture. On the other hand,
we have the possibility to do the same work in other envi-
ronments which let us to add / free computational resources
depending on the requested load. Thus, Cloud are a suitable
environment for this purpose. The work would go through
the use of resources outsourcing with the aim to improve
the server’s scalability, as well as the availability and fault
tolerance of the same.

Furthermore, we want to use some analysis tool in order
to extract all the possible execution information from the
Linux Kernel of the System Under Test, that is, trace and
represent what are doing the worker threads of the appli-
cation server. For example, we want to obtain information

11



about the different thread states, in which CPU they run,
the synchronization between them, etc. One possible tool
which allows us to extract this desired information is IBM
Toolkit for Data Collection and Visual Analysis for Multi-
Core Systems [13]. In fact, it targets many common perfor-
mance problems pertaining to Java applications running on
multi-core or multi-processing platforms.

References

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Bottleneck
Characterization of Dynamic Web Site Benchmarks. In Third
IBM CAS Conference, 2002.

[2] Apache Tomcat. http://tomcat.apache.org.
[3] V. Beltran, J. Torres, E. Ayguade, and S. Barcelona. Un-

derstanding Tuning Complexity in Multithreaded and Hybrid
Web Servers.

[4] A. Bosque, P. Ibañez, V. Viñals, P. Stenström, and J. Llaberı́a.
Characterization of Apache web server with Specweb2005.
Proceedings of the 2007 workshop on Memory performance:
Dealing with Applications, systems and architecture, pages
65–72, 2007.

[5] D. Carrera, V. Beltran, J. Torres, and E. Ayguade. A Hybrid
Web Server Architecture for e-Commerce Applications. In
ICPADS’05: Proceedings of the 11th International Confer-
ence on Parallel and Distributed Systems (ICPADS’05).

[6] D. Carrera, J. Guitart, J. Torres, E. Ayguade, and J. Labarta.
Complete instrumentation requirements for performance
analysis of Web based technologies. In Performance Analy-
sis of Systems and Software, 2003. ISPASS. 2003 IEEE Inter-
national Symposium on, pages 166–175, 2003.

[7] J. Guitart, V. Beltran, D. Carrera, J. Torres, and E. Ayguadé.
Characterizing secure dynamic web applications scalability.
Parallel and Distributed Processing Symposium, Interna-
tional, 1:108a, 2005.

[8] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé.
Designing an overload control strategy for secure e-
commerce applications. Computer Networks, 51(15):4492–
4510, 2007.

[9] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé.
Dynamic CPU provisioning for self-managed secure web ap-
plications in SMP hosting platforms. Computer Networks,
2008.

[10] J. Guitart, D. Carrera, J. Torres, E. Ayguadé, and
J. Labarta. Successful Experiences Tuning Dynamic Web
Applications using Fine-Grain Analysis. Technical report,
Research Report UPC-DAC-2004-3/UPC-CEPBA-2004-2.
January 2004.

[11] J. Guitart, D. Carrera, J. Torres, E. Ayguade, and J. Labarta.
Tuning dynamic Web applications using fine-grain analy-
sis. In Parallel, Distributed and Network-Based Processing,
2005. PDP 2005. 13th Euromicro Conference on, pages 84–
91, 2005.

[12] R. Hariharan and N. Sun. Workload characterization of
SPECweb2005. SPEC Benchmark Workshop. SPEC, 2006.

[13] IBM Data Collection and Visual Analysis for Multi-
core Systems. www.alphaworks.ibm.com/tech/
dcva4j.

[14] S. Mahadevan. Performance Analysis of Offloading
Application-layer Tasks to Network Processors. PhD thesis,
University of Massachusetts Amherst, 2007.

[15] SPECweb2005. http://www.spec.org/web2005/.
[16] SPECweb2005 Benchmark Design Document.

http://www.spec.org/web2005/docs/
designdocument.html.

[17] B. Veal and A. Foong. Performance scalability of a multi-
core web server. In Proceedings of the 3rd ACM/IEEE Sym-
posium on Architecture for networking and communications
systems, pages 57–66. ACM New York, NY, USA, 2007.

[18] L. Wang, G. Von Laszewski, M. Kunze, and J. Tao. Cloud
computing: A Perspective study. 2008.

[19] S. Warner and J. Worley. SPECweb2005 in the Real World:
Using Internet Information Server (IIS) and PHP. In 2008
SPEC Benchmark Workshop, 2008.

[20] A. Weiss. Computing in the clouds. 2007.

12


