
Guided Performance Analysis

Combining Profile and Trace Tools
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Abstract. Performance analysis is very important to understand the
behavior of applications and to identify bottlenecks. Performance analysis
tools should facilitate the exploration of the data collected and help
to identify where the analyst has to look. While this functionality can
promote the tools usage on small and medium size environments, it
becomes mandatory for large-scale and many-core systems where the
amount of data is dramatically increased. This paper proposes a new
methodology based on the integration of profilers and timeline tools to
improve and facilitate the performance analysis process.

1 Introduction

The performance of an application is influenced by multiple and complex factors.
Performance measurement and analysis tools allow to understand the applications
performance behavior and give hints on how they can be optimized. There are
two main approaches on such performance analysis tools:

Profile-based tools work with statistics aggregated over the time dimension,
keeping the metrics per function and/or process. Despite the time aggregation,
the volume of data can still become huge if a large number of processes is
measured or a very large number of metrics is precomputed. But usually the
accumulation over time drastically reduces the data volume. The profiled data is
presented structured in tables or trees. These two facts (size and type of display)
facilitate the correlation between metrics. Many of the profiler tools can link the
metric values with the source code showing the location and in some cases the
code can be edited from the profiler GUI.

Timeline visualization tools work with performance data in the 2D space
defined by processes and time. This approach yields a lot of data, and the
justification is that the variance over time is very important. The advocates
for traces defend that the aggregation could mask the metrics, preventing the
analyst from looking at the metrics details and variance. Keeping the time
dimension allows the user to dynamically compute separate values for different
time regions while doing the analysis. In addition, some of these tools are capable



of computing new metrics defined on the fly increasing the search tree size. Many
timeline tools allow the user to accumulate the metrics in tables to obtain profile-
like views or histograms for a given metric.

There are clear strengths in both approaches that make them complementary,
but usually these tools are disconnected. A first reason is that profilers and
timeline tools work with different types of data, but even if there is a translator,
the integration does not go further than being able of working with performance
data from the other tool. To make things more difficult, each tool has its own
format despite initiatives to promote a common format like OTF [1] for traces
and PERI-XML [2] for profiles. The contribution of this work is to demonstrate
how profilers and timeline tools can interoperate defining a new methodology
that uses at each step the tool that easily answers the analyst question.

The methodology defined herein benefits from both approaches. The analysis
is initiated using the profiler to identify regions or metrics of interest for a
deep analysis. For these regions/metrics, the timeline tool is used to display
the details, e.g., to investigate the context or history of a source of unusual
metric values. The integration should provide the feeling of a unified environment
capable of collecting all the information required in a single run and the tools
should be responsible for keeping the analysis context as transparent as possible.
In our work we have interfaced KOJAK and PeekPerf profilers with the Paraver
analysis tool. The focus of the methodology is not on the data adquisition but
on the analysis phase because we consider it more complex.

2 Performance Analysis Workflows

Post-mortem performance analysis is usually defined in two steps for both profile
and timeline tools. The first step collects data from the execution and the second
one displays the data to the analyst. If a user wants to use a profiler and a
timeline for the analysis, usually this would require to do two different executions
of the application, unless there is a translator and the data required by one tool
can be extracted from the data collected by the other. Some tools like KOJAK
divide the second step in two parts: the automatic analyzer (EXPERT) extracts
metrics from the trace that are presented to the user with CUBE.

The proposed approach (Figure 1) extends this structure to explore new paths
between the collected data and its visualization. The initial path connects the
profile and the tracefile views combining them to carry out the analysis. Other
interesting paths would be to generate new profile views from the visualization
modules (usually trace visualization, but even from a profile view). This approach
refines the metrics based on the results of a previous analysis step.

In the current implementation, the selection is controlled by the user, who
decides what to do next. This includes a manual refinement to extract new
metrics based on the previous step. But this process can be done automatically
by an expert system. The methodology would be defined on a search tree and
the intermediate results would decide the branch for the next step. The system
would present the relevant data to the analyst who can decide where and how to
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Fig. 1. Proposed workflow.

refine the analysis. An example of semi-automatic approach is the IBM’s High
Productivity Computing System toolkit (HPCST) [3] which actively searches
for known performance patterns instead of recording information. The toolkit
integrates performance tools, compiler and expert knowledge.

3 Coupling Profile and Timeline Analyzers

As depicted in the previous section, one of our objectives is to obtain all the
information from a single run. It is not only a matter of conserving resources,
but also to avoid correlating different runs measurements. When data is collected
with instrumentation (as opposite to sampling) the overhead of gathering the
information is similar for both timeline and profiling except on the regions where
the tracing buffer is flushed to disk. The proposed approach is to collect the
timeline information and to extract from it the profiled data.

The module that processes trace data to obtain the profiler input corresponds
to the EXPERT module in the KOJAK environment. It is a kind of filter that
extracts and aggregates the data relevant to the selected metrics. The user
is able to select the metrics to be explored, but it is important to provide
a good default set. Examples of performance metrics to be analyzed by the
profiling environment are: time, instructions per cycle, load balance, L2 misses,
L1/L2 miss ratio and message size. The filter program may use the functionality
provided by the trace tool to generate a profile. In order to be able to later
connect the profile visualization with the timeline visualization, in this phase
some additional references have to be included on the profile data. The references
should define which views can be generated and how to compute them (for
instance being on a given user function or being on a region with a late sender).

The profile visualizer is used to analyze the generated metrics. The tool has
to offer a new functionality for the coupling with the timeline visualizer: it needs
to accept as part of its input new hidden metrics used to send a request to an
external presenter and to offer to the user the possibility to call the timeline.

Finally, the timeline visualizer provides a mechanism to be driven by the
profile analysis, interpreting its requests. The basic mechanism allows the profiler
to raise a new window on the timeline tool. In the future it might be interesting to
use a mechanism that allows to create a kind of dialog, or to get feedback. There



is a wide range of possibilities: from checking that the view was successfully
presented to get details on the data shown to be added on the profiler display.

4 The Tools

This section briefly describes the tools involved in this work. Obviously, the
proposed methodology would be applicable to any tool providing the coupling
functionality described on the previous section.

4.1 PeekPerf

The PeekPerf GUI is the control center of the IBM High Performance Computing
Toolkit (IBM HPCT). The entire tuning process (instrumentation, execution
and analysis) can be conducted from here. The instrumentation can be achieved
without source code modifications or recompilation. The instrumentation is
controlled using symbolic names in the source domain, but all the modifications
to the application are transparently performed on the binary. Another feature of
the toolkit is the capability to collect various dimensions of performance data,
including CPU, message passing, thread activity, IO and memory. This data can
be simultaneously collected in a single run, thereby significantly reducing the
time needed to profile the application. Once the performance data is generated,
PeekPerf presents the information in a user-friendly manner that highlights the
relation between the performance metrics and the source code statements. Thus,
the user can relate the results better with the source program being examined.

The profile data is available for all of the dimensions of performance data.
The trace data that stores the timeline information is available for IO and MPI.
PeekPerf provides the viewers to visualize the IO trace and MPI trace data. The
profile-based performance data follows some predefined XML syntax so that
PeekPerf is able to process the data and present it in a tree representation.

4.2 KOJAK

KOJAK is an automatic performance evaluation system for MPI, OpenMP,
SHMEM, and hybrid applications written in C/C++ or Fortran. It generates
event traces from running applications and automatically searches them off-line
for execution patterns indicating inefficient performance behavior. KOJAK is
jointly developed by Forschungszentrum Jülich, Germany, and the University
of Tennessee, USA. Since 2008, KOJAK is part of the Scalasca toolset [7],
which is a parallel implementation of KOJAK and therefore much more scalable.
The work in this paper was still done within the KOJAK toolset, however a
reimplementation within the Scalasca context is planned.

The trace is subjected to an off-line analysis performed by EXPERT which
attempts to identify specific performance properties. Internally, it represents
performance properties as execution patterns that model inefficient behavior.
These patterns are used to recognize, classify, and quantify inefficient behavior



in the application. The performance properties addressed by KOJAK include
inefficient use of the parallel programming models as well as low CPU and
memory performance. The analysis process automatically transforms the traces
into a compact call path profile which includes the execution time penalties
caused by the different patterns broken down by call path and process or thread.

The call path profile can be viewed using CUBE [8], a generic tool for
displaying a multidimensional performance space consisting of the dimensions
(i) performance property, (ii) call path, and (iii) system resource. Each dimension
is represented as a tree browser which can be collapsed or expanded to achieve the
desired level of granularity. The tree browsers are coupled such that the penalty
caused by a particular property can be broken down by call path and process or
thread (Figure 2). The automatic analysis can be combined with manual time-
line analysis using Paraver or Vampir to investigate the context of the previously
identified patterns in more detail. For this purpose, KOJAK includes appropriate
trace-format conversion utilities. In addition, it is possible to let EXPERT write
a second event trace with events describing individual pattern instances. For a
detailed description including a complete list of patterns see [4, 5].

4.3 Paraver

Paraver [9, 10] is a very flexible timeline analysis tool. Its analysis power is based
on two main pillars. First, its trace format has no semantics; the tool is not aware
of concepts such as hardware counter, MPI call or OpenMP loop but it can work
with all of them as long as they are defined as events in its trace. Extending the
tool to support new programming models or new performance data requires no
changes on the visualizer, just to capture such data in a Paraver trace. The
second pillar is that the metrics are not hardwired on the tool but programmed.
To compute them, the tool offers a large set of time functions, a filter module and
a mechanism to combine two timelines. This approach allows to display a huge
number of metrics with the available data. To capture the experts knowledge,
any view or set of views can be saved as a Paraver configuration file. After that,
re-computing the view with new data is as simple as loading the saved file.

Paraver provides two main types of display. The basic view is a timeline
with a row per object. Discrete metrics like user functions are drawn with code
colors where each color represents a value. A gradient scale (from light green to
dark blue) is used for continuous metrics like counters. Statistics are stored on
tables used to compute profiles, histograms and to correlate metrics. Both types
of views can be displayed as a 2D array of pixels whose scalability is somehow
similar to digital photos where image pixels are mapped to display window pixels.

Paramedir [11] is a non-GUI version of Paraver which generates text files
for external analysis taking as input a trace and a set of configuration files.
Paramedir was used to extract from the trace the metrics to display with PeekPerf.

Paraver has been extended with a signal command functionality to enable
external applications to trigger loading new views on a selected time range or
zooming on a previous loaded view. This simple yet extremely flexible mechanism
allows to easily steer Paraver from an external tool.



5 Examples of Analysis with the Proposed Framework

This section shows how the combination of profile and timeline tools improves
the ease-of-use and accuracy of the analysis using the profiler to focus and the
timeline tool to look for details/distribution. While the first example uses the
trace visualization to complement the facts identified on the profiler, the second
example covers the approach of refining the data depending on previous results.

5.1 KOJAK and Paraver

Fig. 2. KOJAK’s analysis results for WRF shown in CUBE browser.

The example is based on a measurement of WRF-NMMii [12], a public-
domain numerical weather prediction code developed by the U.S. National Oceanic
and Atmospheric Administration (NOAA) National Centers for Environmental
Prediction (NCEP), consisting of the Nonhydrostatic Mesoscale Model (NMM)
within the Weather Research and Forecasting (WRF) system. It consists of
some 530+ source files with over 300 thousand lines of code (75% Fortran,
25% C). Simulations were analyzed using the Eur-12km dataset with a default
configuration, apart from varying the duration of the forecast and disabling
intermediate checkpoints. The data shown here are from an experiment with 64
processors on the MareNostrum machine at Barcelona Supercomputing Center.

After instrumenting the application with KOJAK tools, executing it on
the parallel system, and analyzing the traces with EXPERT, it is possible to



investigate the generated pattern profile with CUBE (see Figure 2). In the
“Metric tree” pane on the left side, one can quickly see that KOJAK found two
main problems: First, more than half of the point-to-point traffic is Late Senders

(3.69 seconds compared to 3.41 seconds spent in regular MPI point-to-point
functions). More than half of the late Senders can be attributed to Messages in

Wrong Order (1.99 vs. 1.70 seconds). The second detected problem is WaitAtNxN

with a severity of 0.68 seconds. Selecting the collective operation pattern (as
shown in Figure 2), displays in the middle “Call tree” pane where this pattern
occurred in the program. In the example, it is a single call of MPI Allreduce

from the module function advection::had2 called from solvenmm. By selecting
MPI Allreduce in the call tree pane, the distribution of the imbalance over the
nodes and processes can be investigated in the “System tree” pane on the right.

It is important to note that waiting time in front of a collective is more of a
symptom than a cause of a performance problem. When the problem cannot be
resolved by looking at the corresponding portion of the source code, the context
of this pattern can be investigated with timeline tools like Paraver. To do this
easily, one can use the “Connect to trace browser” item of the “File” menu.
This automatically starts a new instance of Paraver, loading the corresponding
trace file via remote control. By default, it brings up the “State as is” display
of Paraver which shows the change of MPI states over time. The dialog window
also allows the user to select other Paraver configuration files if desired.

Fig. 3. Zoomed-in Paraver timeline display of WRF trace showing just the instance of
the WaitAtNxN pattern with maximum severity.

In the beginning, the complete timelime is shown. By either selecting the
desired pattern in the “Metric tree” (e.g. WaitAtNxN) or the affected call path
(e.g. MPI Allreduce) in the CUBE display and using the context menu item
“Max severity in trace browser”, CUBE is automatically configured to zoom
Paraver’s timeline display to the most severe instance of the selected pattern
overall in the execution or in the context of the selected call path respectively.
The result is shown in Figure 3. In this view dark blue corressponds to the
unbalanced computing while light orange represents time in the MPI collective.



One of the tasks on the bottom of the image is the latest to end its computation
and around 25% of the time 3 tasks compute while the rest wait for them.

Paraver can be used to investigate the context or the history of the instance
of the pattern, for example whether a calculation or communication imbalance
causes the imbalanced waiting times indicated by WaitAtNxN. The same technique
can of course also be used to investigate the detected performance problems of
the point-to-point communication of the application.

Finally, as explained earlier, EXPERT is also able to produce a trace of
patterns in addition to the pattern profile report. So in this example, we could
have done the same analysis steps also with the pattern trace, or even with both
traces. In this case, when a zoom to the most severe instance of a pattern is
requested, CUBE zooms both timeline displays via remote control of Paraver.

5.2 PeekPerf and Paraver

The environment was used to analyze the scalability of GROMACS [13], a
versatile package to perform molecular dynamics, with the testcase “nucleosome.”
The code was executed starting with 1 task and doubling the number up to 1024.
As the scalability decreases over 256 tasks, the analysis compares the run of 256
tasks with the 64 tasks case that achieves better performance. We obtained traces
for these configurations and extracted a first set of global metrics to measure
the efficiency at the whole execution level such as parallel efficiency and load
balance as described in [14]. The values range from 0 to 1 (except IPC) with
high values reporting a good performance and low values identifying a problem.

The analysis starts from PeekPerf (Figure 4 captures the metrics for both
runs). As PeekPerf displays all global metrics on a line, it is very simple and
quick to analyze and compare their values. The parallel efficiency is 55% with 64
tasks decreasing to 31% when there are 256 tasks. Both values indicate a poor
performance, but with 256 tasks more than 2/3 of the resources are wasted. The
parallel efficiency is computed from two factors: communication efficiency (time
all tasks spent on MPI) and load balance (time distribution between tasks).

Fig. 4. Global metrics displayed on PeekPerf(top: 64 tasks case; botton: 256).

We can observe that the poor scalability is mainly due to load imbalance
(duration) and computation imbalance (instructions) as those are the factors



with a higher decrease. But, the communication efficiency, not significantly
penalized when the number of task is increased, is very poor. These observations
drive the next analysis step to focus on two targets: (1) analyze time and
computation balance of both runs to understand the poor scalability and (2) analyze
the 64 tasks run communication performance.

With respect to the first issue, as we are interested in the time and processes
distribution, the timeline analysis tool is foreseen as the best alternative. The
PeekPerf contextual menu offers the choice “Call Back to the Integrated Tool”
that allows to easily raise a set of predefined Paraver windows. Selecting the
duration of the computation bursts we detect that GROMACS is composed by
two kinds of tasks: a subset performs FFTs that are characterized by a sequence
of medium size computations (around 8ms with 64 tasks) while the rest execute
particle computations significantly larger (around 20ms for the same case). For
simplicity, the details on the load balance are provided only for the FFTs tasks–
Figure 5 compares their execution. The x-axis represents time and the y-axis the
MPI tasks. Despite the image of the FFTs for the 256 case is compresed and
with this window size we cannot isolate the behavior of a given task, it provides
enough details on the global behavior (structure, imbalance, duration, etc.).

Fig. 5. Analysis of the FFTs duration scalability (top: 64 tasks case; botton: 256).
Black corresponds to MPI. 6 ellipsis denote 6 code regions. Note the poor speed-up
achieved by the fourth marked region due to imbalance.

On a perfect speed-up, the duration of a region with 256 tasks should be
1/4 of the execution with 64 tasks. Both windows have the same time scale,
showing that on the interval where the 64 tasks run executes one iteration with
256 tasks executes a little bit more than two iterations. Observe that the main
computation regions (zones 2, 4 and 6) obtain good time reductions. Zone 4 has
a problem of imbalance: while with 64 tasks it has a small impact, in the 256
tasks case it becomes the bottleneck as this imbalance does not scale. Zone 1
is dominated by communications and as would be expected, it achieves a poor



speed-up. Within Paraver the callstack can be used to identify where any of those
regions are in the source code. Notice that this part of the analysis was easily
done opening the Paraver views while would be very complex using a profiler.

Fig. 6. Analysis of the computation (#instructions) imbalance (top: 64 tasks case;
botton: 256). Note that region 1 #instructions is not reduced and imbalance increases.

Restating the hints given by the PeekPerf analysis, the metrics reported a
computation balance problem. To analyze this issue, from PeekPerf we opened
the instructions histogram. Again, this analysis is done with the timeline tool
because we are interested on the distribution. With both histograms at the same
scale, we obtain Figure 6. Paraver histograms have processes on the y-axis and
the selected metric on the x-axis. In the instructions histogram, colored cells on
the right side of the image represent areas with a large number of instructions,
colored cells on the left side correspond to regions that execute few instructions.

If a code region is perfectly scalable with respect to #instructions, when tasks
are multiplied by 4, the #instructions/task is reduced to 1/4, so both versions
execute the same number of instructions (no code replication). This reduction
is reflected on the histogram as a proportional shift to the left. With a perfect
speed-up the displacement would be 3/4 on the x-axis. While zone 2 (with a high
number of instructions) obtains a good reduction (the displacement is close to a
perfect scenario), zone 1 not only obtains a poor reduction, but the imbalance
is more noticeable when the number of tasks is increased.



Finally, to analyze the poor communication performance with 64 tasks, we
extracted new metrics applied at the level of the MPI call lines. These metrics
include for example time, number of calls, average duration and message size.
Computing these metrics at the level of the call line allows the user to separate,
for instance, different broadcasts depending on the calling context. Due to space
limitations it is not possible to discuss the details but we would like to remark
that the profiling view is the most appropriate tool for identifying the time
spent in each MPI call and the largest MPI call. Notice that with the proposed
methodology based on refinements, this new profiling would be generated only
because a previous step identified it as a relevant peformance data.

6 Related work

There are many performance analysis tools, however most of them only support
one analysis mode and do not allow for an easy integration with other tools.

TAU [6] is a framework for performance instrumentation, measurement and
analysis. In addition to profile based data, TAU generates event traces and has
utilities to export them to Jumpshot, Vampir or Paraver. The integration for the
analysis phase is limited to a trace to profile converter. The Parallel Performance
Wizard (PPW) [16] is a performance analysis framework for MPI, SHMEM, and
UPC. Like TAU, it only supports to export trace data with the external viewers
Jumpshot and Vampir without any further integration.

Vampir [15] is a timeline visualizer for Open Trace Format (OTF) traces.
There is an internal, unpublished version of VampirServer with remote control
via a DBUS interface [18]. An older version was once combined with the KAU
OpenMP compiler tools (Guide, GuideView) to the VGV tool [17]. OpenMP
constructs were instrumented by the Guide compiler adding statistics into the
trace. Selecting a parallel region in the Vampir timeline triggered the corresponding
Guideview displays. However, the tool never made it beyond a prototype.

On [19] CAPO (Computer Aided Parallelization tool) was interfaced with
Paraver to support the parallelization of existing sequential codes. In the prototype,
the user could jointly navigate through program structure and performance
data information in order to make efficient optimization decisions. On [20] the
prototype was extended with an expert system helping to filter, correlate and
interpret the data gathered by the automatic parallelization and analysis tools.

7 Conclusions and Future Plans

We have interfaced KOJAK and PeekPerf with Paraver to facilitate the analysis
benefiting from their complementary views. The analysis starts with the profiler
that provides a summarized view to identify the most interesting metrics and/or
code areas to focus the detailed analysis with the timeline tool. We have shown
how the proposed environment can be used with two real-life examples.

The implementation is based on simple and generic interfaces. The signal
mechanism implemented in Paraver is used from both KOJAK and PeekPerf.



We believe it is very important to promote the interoperability through generic
mechanisms so extending its usage to a new tool requires no modification. As
a proof of success, recently the modules to interoperate Paraver with PeekPerf
have been extended to implement the same coupling between TAU and Paraver.
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