
Design Space Exploration of CMPs with Caches and Local
Memories

Lluc Alvarez∗†, Ramon Bertran∗†, Marc Gonzàlez∗†,
Xavier Martorell∗†, Nacho Navarro∗†, Eduard Ayguadé∗†

∗Departament d’Arquitectura de Computadors †Barcelona Supercomputing Center
Universitat Politècnica de Catalunya Barcelona, Spain.

Barcelona, Spain. name.surname@bsc.es

ABSTRACT
Chip multiprocessors (CMPs) are the dominating architec-
tures nowadays. There is a big variety of designs in current
CMPs, with different number of cores and memory subsys-
tems, because they are used in a wide spectrum of domains
and so its best configuration highly depends on several de-
sign goals such as performance, energy consumption, scala-
bility, area and programmability. This paper studies differ-
ent chip configurations in terms of number of cores, size of
the shared L3 cache and off-chip bandwidth requirements in
order to find what is the most efficient design for High Per-
formance Computing applications. In addition, it analyzes
two types of CMPs: CMPs with a traditional cache hier-
archy, or cache-based CMPs, and CMPs with both cache
hierarchy and local memories, or hybrid memory CMPs.

Results show that, for HPC workloads, cache-based cores
perform better when the shared L3 cache is reduced in order
to make room for additional cores and the bus is able to pro-
vide a high bandwidth, reaching a speedup of 3.31x against
a baseline architecture. The best chip configurations of hy-
brid memory CMPs are the ones with a moderate number
of cores and not so mall L3 caches and, furthermore, they
don’t need a bus with high bandwidth. They achieve a max-
imum speedup of 3.06x against the baseline architecture. In
the direct comparison between the chip configurations of
the two types of CMPs, hybrid memory CMPs outperform
cache-based CMPs in almost all configurations, achieving a
maximum speedup of 1.74x.

1. INTRODUCTION
Chip multiprocessors (CMPs) are the dominating archi-

tectures nowadays and, probably, in the future. CMPs are
used in a wide spectrum of domains: high performance com-
puting (HPC), servers, commodity desktops, gaming, em-
bedded systems, etc. The majority of CMP designs that
exist nowadays are based on the replication of several cores
inside the same chip sharing up to some degree a complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

memory subsystem. It is the relation between the number
of cores and the memory subsystem design that has become
crucial for a CMP design, given that this relationship has an
immediate impact on the overall performance and scalability
of the architecture [14, 17, 22].

Current CMP architectures show different organizations
in their number of cores and their memory hierarchy. The
IBM POWER7 [24] and the most powerful Intel processors
based on the Nehalem microarchitecture [3] have 8 cores
a large shared L3 cache. Others like the AMD Phenom,
based on the AMD K10 architecture [1], and the Sun Mi-
crosystems UltraSPARC T3 [23] have a very small shared
last level cache and different number of cores: 4 and 16, re-
spectively. Beyond that, some newer designs like the Intel
SCC [4] completely eliminate the shared cache in order to
make room for more cores, reaching 48 simple P54C-based
cores on chip. Besides this variety, some processors have
asymmetrical or heterogeneous cores and memory models.
For example, the IBM Cell [13] includes 9 cores (1 general-
purpose core and 8 accelerators) and a memory organization
that combines the use of local memories and caches. These
examples demonstrate that the optimal chip configuration
has not been found yet, since it highly depends on several
design goals such as performance, energy consumption, scal-
ability, area and programmability. However, all these CMP
schemes have some common characteristics: a number of
cores as big as possible, given the area and technology lim-
itations, and a memory hierarchy with a low-latency, high-
bandwidth size-constrained stack of intermediate memories,
plus a final huge high-latency, low-bandwidth off-chip main
memory.

The trend in the HPC domain is to use CMPs but it is
not clear what is the best CMP design for this environment,
since all kind of general purpose CMPs have been used to
build supercomputers in the last years. In order to find
what is the CMP configuration that better fits in HPC do-
mains it is important to know what are the characteristics of
HPC applications. In general, HPC applications are domi-
nated by parallelizable computational loops that operate on
huge data sets. The data sets are normally implemented
in the form of matrices and vectors, and they are sequen-
tially traversed during the execution of the computational
loops, which implies having predictable access patterns with
a high degree of spacial locality and a uniform distribution
of accesses to the shared cache and to the main memory.
Depending on how the computational loops are distributed
in the application it is also possible to find temporal local-

ity in memory accesses. These characteristics seem to fit
better in architectures with a high number of cores because
they are able to take more profit of the high degree of par-
allelism existent in HPC applications, as proven by the fact
that GPGPUs are becoming a very important component of
the most powerful supercomputers that currently exist [5].
Following this trend and the one opened by the design of the
Intel SCC processor it is interesting to study the behaviour
of CMP configurations derived from reducing the size of the
shared cache in order to add more cores to the chip.

This paper studies different chip configurations in terms
of number of cores, size of the shared L3 cache and off-chip
bandwidth requirements. Starting from a multicore with a
very large L3 cache, in this paper it is proposed to reduce
the amount of area dedicated to the shared L3 cache and
use this area to put more cores in the chip. Decreasing the
capacity of the L3 cache frees an amount of area in the chip,
but this amount of area can vary significantly depending on
the technology and the design of the cache. The area of a
core is also very dependent on the technology, the design of
its private caches and the complexity of its pipeline. Due to
these variabilities it is possible to have very different chip
configurations. Adding cores to the chip has the immedi-
ate consequence of being able to execute the parallel loops
faster, in general. The problem is that reducing the capac-
ity of the L3 cache in order to make room for these extra
cores has two important implications. Firstly, current cache
coherence protocols limit the number of cores in a CMP be-
cause of their lack of scalability. Secondly, reducing the size
of the L3 cache increases its miss ratio, in the general case,
and this increase in the miss ratio generates traffic between
the chip and the main memory, so the bus has to be able
to deliver the required bandwidth in order to maintain an
acceptable performance. These two problems can be allevi-
ated by adding local memories to the cores [7], since local
memories do not generate coherence traffic and make a bet-
ter utilization of the bus bandwidth. This is the reason why
this paper takes into account two types of cores: cores with
a traditional cache hierarchy, or cache-based cores, and cores
with a local memory side to the cache hierarchy, or hybrid
memory cores.

The main contribution of this paper is the study of the
relation between the number of cores, the size of the L3
cache and the off-chip bandwidth for CMPs with two kinds
of memory models: a hardware cache hierarchy and a hy-
brid memory model that combines the cache hierarchies with
on-chip local memories. The study results in several chip
configurations that include a number of cores that range
from 16 to 28, L3 cache sizes that vary between 4.5MB and
21MB and bus bandwidths from 20GB/s to 65GB/s. All
of these chip configurations are realistic and report speedup
numbers of 2.13x to 3.31x for a representative set of loops
coming form the HPC domain.

The rest of this paper is organized as follows: Section 2
presents some related work. Section 3 describes the archi-
tecture of a CMP and its design parameters as well as the
microarchitecture of the cache-based core and the hybrid
memory core. Section 4 explains the experimental frame-
work and the methodology. Section 5 evaluates the perfor-
mance of the different chip configurations. Finally, Section 6
concludes this paper with a summary of its main ideas and
results.

2. RELATED WORK
The design space exploration of CMPs has been a very

relevant topic since these architectures appeared, so many
works have been done on it from the point of view of different
metrics.

From the pure performance perspective, J. Huh et al. [12]
study the performance of CMPs under several design de-
cisions concerning core complexities, cache hierarchies and
available off-chip bandwidths, using several single-threaded
applications to evaluate their proposals. A similar study is
done by M. Ekman et al. [9] using parallel HPC workloads.

Many other works include power consumption in their ex-
plorations. J. Li and J. F. Martinez [18, 19] explore param-
eters such as the number of cores and the voltage/frequency
scaling with analytical and experimental models to study
power efficiency. R. Kumar et al. [15] focus on the charac-
teristics of the cores, proposing to use fully custom hetero-
geneous cores to improve the performance of CMPs given
power and area constraints. Another work [16] by the same
group analyse the most commonly used on-chip interconnec-
tions in CMPs, adding also area and scalability considera-
tions to the study.

Some other works also include temperature in their stud-
ies. Y. Li et al. [20] do a multidimensional design space
exploration of CMPs given thermal constraints, concluding
that these constraints dominate over other physical con-
straints. Similar conclusions are extracted from the work
of M. Monchiero et al. [21], where they evaluate perfor-
mance, power and temperature of chip configurations with
different number of cores, issue width of the cores and size
of the L2 caches, that can be private or shared.

The main difference between this work and the ones just
reviewed is that they do not include hybrid memory cores in
their studies. Although the introduction of local memories
(also called scratchpad or streaming memories) in a core is
not novel, nobody has done a design space exploration of
CMPs with such memory model. In addition, most of the
previous work regarding local memories propose to replace
caches with local memories, not to combine them like this
work proposes to.

A work by J. Levich et al. [17] compares the two memory
models in a CMP. The authors design a CMP with caches
and another one with local memories, fixing the number of
cores and the size of the shared cache, and compare the
two designs in terms of performance, bandwidth utilization
and energy consumption. The study the authors do is very
different from this one because, firstly, they don’t do a design
space exploration work varying the design parameters of the
chip and, secondly, they use caches or either local memories,
but don’t propose to build a hybrid memory model.

R. Bertran et al. [8] propose to have a core with both
the classical cache hierarchy and a local memory. In their
work the authors describe how the local memory fits in the
core, how it interacts with the cache hierarchy and how this
hybrid memory model is managed by the hardware and the
compiler. This work assumes almost all the design decisions
taken in the work by R. Bertran but, at the same time,
differs a lot from that work, since they evaluate the perfor-
mance and power consumption of a single hybrid memory
core while this work constructs a CMP with such cores and
analyzes its performance, discussing the effect of varying dif-
ferent design parameters of the chip.

Figure 1: Scheme of the CMP architecture.

3. ARCHITECTURE AND DESIGN SPACE
This section describes the architecture of the CMP this

work assumes and enumerates its main design parameters.
After that the microarchitecture of both cache-based cores
and hybrid memory cores is presented. At the end it is
explained what values have been studied for each design pa-
rameter of the CMP in order to do the design space explo-
ration.

3.1 CMP architecture
Figure 1 shows an scheme of the architecture this work as-

sumes. The CMP is composed of num cores cores, a shared
L3 cache of size L3 size and an interconnection network that
connects these components. The chip is connected to a bus
with a bandwidth of BW that is used to access main mem-
ory. Cores can be either cache-based cores of hybrid memory
cores. The former cores have a 32KB L1 I-cache, a 64KB
L1 D-cache and a unified 256KB L2 cache. The latter cores
have a 32KB L1 I-cache, a private 32KB L1 D-cache, a 32KB
local memory and a unified 256KB L2 cache. Depending on
the kind of cores a CMP is composed of, it can be either a
cache-based CMP or a hybrid memory CMP.

Since the aim of this work is to study what is the behaviour
of the two CMP models with different chip configurations of
num cores, L3 size and BW, a set of values has been fixed
for each parameter. In order to obtain realistic chip config-
urations, it has been defined two parameters α and β. The
parameter α corresponds to the relation between the area of
1MB of L3 cache and the area of a core. The parameter β
is defined as the minimum amount of memory in L3 cache
per core. This means that in any chip configuration the
size of the L3 cache is forced to be equal to β × num cores.
Given a baseline chip configuration and a pair of values for
α and β one can derive new chip configurations by reduc-
ing L3 size and increasing num cores according to the given
parameters. Using this methodology it is possible to avoid
undesired chip configurations, since α controls that the area
of the chip configurations never exceeds the area of the orig-
inal chip configuration and β ensures a balance between the
number of cores and the resulting L3 cache. Section 3.3 jus-
tifies the values for α and β and describes all explored chip
configurations.

3.2 Core microarchitecture
The cache-based core used is an Intel Nehalem-like core,

with a private 64KB L1 D-cache, a private 32KB L1 I-
cache and a private 256KB L2 cache. The CPU has a 4
instructions-width pipeline so, each cycle, up to 4 instruc-
tions are fetched, decoded, renamed, issued and committed.
The reorder buffer has 96 entries, the issue queue 64 entries
and the load/store queue 80 entries. The CPU has also 3
ALUs and 256 registers for integer operations and, symmet-
rically, it also has 3 ALUs and 256 registers for floating point
operations. Memory operations are executed by 2 load/store
units.

The hybrid memory core has exactly the same CPU as
the cache-based core. The memory hierarchy, though, is
slightly different. The L1 I-cache and the L2 cache are iden-
tical, but the L1 D-cache is reduced to 32KB in order to
make room for a 32KB local memory. The way the local
memory is integrated in the core is very similar to the one
proposed by R. Bertran et al. [8]. The authors of that
work extend the architecture of general-purpose processors
by adding a software managed local memory and a very sim-
ple programmable DMA controller (PDC). The local mem-
ory is used to store only data. The local memory is ac-
cessed reserving a range of physical addresses for it. This
address range is direct-mapped to logical addresses, so when
a memory operation is executed a range check is performed
for each logical address generated. This check is done in par-
allel with the segmentation mechanism, prior to any MMU
action. In order to move data between the local memory and
the main memory a simple PDC is also added to the core.
The PDC only supports asynchronous get (transfer from the
main memory to the local memory) and put (transfer from
the local memory to the main memory) operations to and
from aligned addresses. The issue of a DMA command is
notified by the CPU to the PDC via non-cacheable store
instructions to memory-mapped PDC registers. DMA com-
mands are enqueued in the DMA command queue and are
executed in order. When a DMA command is executed it is
split in bus requests, that are kept in a bus request queue
and are also issued in order. For a get operation, each bus
request snoops the L3 cache. If the data is present in the L3
cache it is moved from there to the local memory, otherwise
it is moved from the main memory to the local memory. For
a put operation, the line is transferred to the main memory
and, in case the line is present in the L3 cache, it is inval-
idated. This mechanism guarantees memory coherence for
DMA transfers but leaves memory consistency as a respon-
sibility for the software.

3.3 Architectural parameters exploration
A set of values has been fixed for each CMP design pa-

rameter. For α, floorplans of modern architectures such as
the IBM POWER7, the Intel Nehalem and the AMD K10
have been examined and, from there, observed that the ra-
tios between the area of 1MB of L3 cache and the area of
a core range from 0.25 to 0.5. Following this observation,
the values used for α are 0.25, 0.33 and 0.5. For β a wide
range of values has been set. The highest value observed
in existing architectures is 4MB of L3 cache per core in the
IBM POWER7, followed by 2MB of L3 cache per core in the
Intel Nehalem. On the other side, the AMD K10 has only
512KB of L3 cache per core. In order to cover a represen-
tative spectrum of possibilities, the set of values fixed for β

Table 1: Chip configurations.

α
0.25 0.33 0.5

β

6MB
8 cores 8 cores 8 cores

48 MB L3 48 MB L3 48 MB L3

4MB
10 cores 10 cores 10 cores

40 MB L3 40 MB L3 40 MB L3

2MB
13 cores 14 cores 16 cores

26 MB L3 28 MB L3 32 MB L3

1MB
16 cores 18 cores 21 cores

16 MB L3 18 MB L3 21 MB L3

512KB
17 cores 20 cores 25 cores

8.5 MB L3 10 MB L3 12.5 MB L3

256KB
18 cores 22 cores 28 cores

4.5 MB L3 5.5 MB L3 7 MB L3

is 6MB, 4MB, 2MB, 1MB, 512KB and 256KB of L3 cache
per core. The baseline chip configuration used in this paper
is a chip with num cores = 8 and L3 size = 48MB. This
baseline chip configuration is used as the starting point to
derive new chip configurations combining values of α and β.
The resulting chip configurations are shown in Table 1.

The values for BW have also been derived from modern
chips. The trend in current CMPs is to use HyperTransport
[2] for off-chip communication, which has bandwidths that
go from 12.8GB/s in HyperTransport 1.0 to 51.2GB/s in
HyperTransport 3.10. The set of values used for BW are
20GB/s, 35GB/s, 50GB/s and 65GB/s.

4. EXPERIMENTAL FRAMEWORK AND
METHODOLOGY

This section explains the experimental framework used to
gather the results. In Figure 2 it can be observed that the
experimental framework has two main components: PTL-
sim and CMP performance estimator. PTLsim is a single
core simulator that is used to do detailed simulations of the
execution of different benchmarks on different core configu-
rations. The single core results of the simulations are fed to
the CMP performance estimator along with the correspond-
ing CMP configurations in order to derive what would be
the performance of the chip. To do that the CMP perfor-
mance estimator uses performance and bandwidth models.
The next two subsections explain the main characteristics of
these two components. The first one describes the simula-
tion environment and the benchmarks that have been used.
The second subsection discusses how the numbers extracted
from the simulations have been used to study the behaviour
of the whole set of chip configurations.

4.1 Simulation environment
For the performance evaluation, PTLsim [25] has been

used to simulate 28 computational loops from four differ-
ent NAS benchmarks [6]. The benchmarks are typical HPC
workloads: CG is a conjugate gradient algorithm, FT com-
putes a Fourier transformation, IS does an integer sort and
MG realizes 3-dimensional multigrid relaxation with peri-
odic boundary conditions. The main reason for present-
ing per loop results is that they allow the behaviour of the
proposal to be studied for different memory access patterns
(regular and regular/irregular). The overall application re-
sults follow the same trends as the ones presented because
the evaluated applications are dominated by these compu-

Figure 2: Scheme of the experimental framework.

tational loops. The simulator has been extended to include
a local memory and a PDC in the hybrid memory core. In
addition, the main architectural parameters in the simulator
have been tuned so that it models the core microarchitecture
explained in Section 3.2, as can be observed in Table 2. The
28 computational loops have been compiled using GCC 4.0
with the -O3 optimization flag on. 150 millions of x86 in-
structions have been simulated for each loop, except in those
cases where the loop finishes before reaching that threshold.

4.2 CMP performance estimation
PTLSim simulates a single core, so from the simulation

results the behaviour of a multicore has to be estimated. To
do that, the CMP performance estimator splits the work to
be done for each loop in N units of work. For each β and
BW, this module receives the single core simulation results
of the execution of the N units of work of every loop on both
a cache-based core and a hybrid memory core. The CMP
results are obtained by applying a performance model based
on the Amdahl’s law for multicores [11] to the simulation re-
sults. Three main reasons support this methodology. First,
the studied loops are completely parallel and so the whole
execution time can be divided by the number of cores. Sec-
ondly, the N units of work done in every loop are uniformly
distributed among its iterations, causing no work imbalance
between cores. Besides, the only core synchronization point
in the whole loop execution happens at its end. Due to the
small amount of cores in this study, the overheads related to
fork/join operations can be considered negligible. Thirdly,
the data set used by each unit of work is disjoint so it can
be assumed that, after the work distribution, the cores do
not interfere in the shared L3 cache.

For cache-based CMPs, the CMP performance estimator
uses equation 1 to calculate their times. A chip configuration
is defined by three values: num cores, L3 size and BW. For
simplicity, and since β = L3 size / num cores, a chip config-
uration can also be defined using its β instead of its L3 size.
Following this nomenclature, let T multicorenum cores,β ,BW
be the time it would take to execute the N units of work of
a loop in a chip configuration defined by num cores, β and
BW, and let T coreβ ,BW be the time it takes a single cache-
based core with an L3 cache of β and a bandwidth of BW
to execute the N units of work of that loop. The execution
time in the chip configuration will be the time of the single
core divided by the number of cores.

Table 2: PTLsim configuration parameters.

PARAMETER CONFIGURATION

Fetch width 4 instructions
Decode width 4 instructions
Rename width 4 instructions

Issue width 4 instructions
Commit width 4 instructions

Branch predictor

Hybrid 4K selector
4K G-share
4K Bimodal

4K BTB 4-way
RAS 32 entries

Functional units
3 integer ALUs

3 floating point ALUs
2 load/store units

Register file
256 integer registers

256 floating point registers

L1 I-cache

32 KB
8-way set-associative

64-byte lines
2 cycles latency

L1 D-cache

Size depends on the configuration studied
8-way set-associative

64-byte lines
2 cycles latency

L2 cache

256KB
24-way set-associative

64-byte lines
15 cycles latency

L3 cache

Size depends on the configuration studied
32-way set-associative

64-byte lines
40 cycles latency

Local memory
Size depends on the configuration studied

2 cycles latency

T multicorenum cores,β ,BW =
T coreβ ,BW
num cores

(1)

Notice that the single cache-based core and the chip con-
figuration have the same bandwidth. The bandwidth re-
quired by the loop executions in the different chip config-
urations has to be also estimated in order to ensure that
the bandwidth provided by the bus is enough to execute the
loops without any performance penalty. The CMP perfor-
mance estimator uses equation 2 to calculate the required
bandwidth. The average bandwidth required by the single
core execution is obtained dividing the number of requests
to main memory Requests MM coreβ ,BW by the execution
time T coreβ ,BW . The average bandwidth required by each
core in the chip configuration is the same as the one in the
single core execution, since every unit of work has the same
bandwidth requirements, and units of work are distributed
among the cores in the multicore chip configuration. There-
fore, the bandwidth required by the whole chip configuration
is num cores times the bandwidth required by one core.

Required BW multicorenum cores,β ,BW =

= num cores× Requests MM coreβ ,BW
T coreβ ,BW

(2)

In the case of hybrid memory CMPs the CMP perfor-
mance estimator calculates their execution times using equa-
tion 3. The equation is similar to the one used for cache-
based CMPs, adding an overhead of DMA timeβ ,BW times

Figure 3: Bus utilization in hybrid memory CMPs.

num cores overheadnum cores,β ,BW . This overhead is ad-
ded in case the execution of a loop in the chip configuration
has higher bandwidth requirements than the bandwidth pro-
vided by the bus, as illustrated in Figure 3. In this figure
the typical execution model induced by local memories is as-
sumed [10]. Under this model the execution is organized in
two parts: control and work. During the control part data
is transferred to/from the local memory and main memory,
and the execution is blocked until all DMA transfers are
completed. Then, some work is performed. This behaviour
is repeated until all assigned units of work are computed.
In this execution model the control part is dominated by
the time it takes to move the data from/to the local mem-
ory using DMAs, which is DMA time. After this part, the
work part starts, executing the body of the loop, which lasts
work time. The sum of these two times is total time. Notice
that a core is using 100% of the provided bandwidth during
DMA time and then, during work time, the bandwidth it re-
quires is negligible. Because of this behaviour, it is possible
to interleave the usage of the provided bandwidth between
the cores. If the number of cores is smaller than total time
divided by DMA time no problem arises: a given core has
its DMA time of dedicated bus and, by the time it needs the
bus again, the other cores have already finished their DMA
operations. This situation is illustrated in the upper part
of Figure 3. However, as it is shown in the lower part of
the figure, if the number of cores is greater than total time
divided by DMA time, the second time a given core needs
the bus for its DMA operations, some other core is using it.
This forces the core to wait for its turn again. In particu-
lar, it has to wait wait time, which is DMA time, times the
number of cores that have not executed its work part yet.
Because of this possible behaviour, the overhead is added to
the multicore time.

T multicorenum cores,β ,BW =
T coreβ ,BW
num cores

+

+DMA timeβ ,BW ×num cores overheadnum cores,β ,BW
(3)

5. EVALUATION
This section first shows the behaviour of the different

configurations of cache-based CMPs, analyzing their perfor-
mance with a perfect bus and discussing its main architec-
tural requirements. Hybrid memory CMPs are later studied,
showing their performance and how the addition of local
memories relax the architectural requirements imposed by
cache-based CMPs. The comparison between the two types
of CMPs is finally presented and discussed.

In order to conclude with an optimal CMP configuration,
the evaluation of the design space exploration has been or-
ganized in three steps. Section 5.1 studies the cache-based
CMP configurations and its outcome is an optimal configu-
ration in terms of the number of cores, the L3 size and the
required bandwidth. Section 5.2 studies the hybrid mem-
ory CMP configurations looking for optimal configurations
in the same form as for cache-based configurations, but with
the aim of determining whether it is possible or not to reduce
the bandwidth requirements. Finally, Section 5.3 compares
both cache-based and hybrid memory CMP configurations
and, for the optimal configurations obtained in the first two
sections, it is determined which one exposes better perfor-
mance and at what bandwidth cost.

5.1 Cache-based CMPs
This section evaluates the potential speedup and band-

width requirements for the different cache-based CMP con-
figurations with different memory latencies. The outcome of
this evaluation is a cache-based CMP configuration with a
number of cores and a size of L3 cache connected to a bus
that maximizes performance.

In Figure 4 it can be observed the average speedups of
the 28 loops executed on the cache-based CMP configura-
tions with respect to the baseline architecture. The chip
configurations are the ones derived from the baseline archi-
tecture setting α to 0.25 in Figure 4a, 0.33 in Figure 4b and
0.5 in Figure 4c. In all figures seven lines are printed, each
one showing the behaviour of the chip configurations with a
given main memory latency.

From Figure 4 it can be studied the scalability of the
cache-based CMPs. The three figures show two clear ten-
dencies: for chip configurations with β ≥ 1MB the speedups
present a perfect scalability and, after that point, reduc-
ing the L3 cache to add more cores provide under-linear
speedups. This situation can be observed in each plot com-
paring the speedups of the first four chip configurations with
the speedups of the last two chip configurations. On average,
the L3 cache miss ratios in the first four chip configurations
are almost identical, so having a smaller L3 cache has a neg-
ligible performance impact. When β < 1MB the average L3
cache miss ratio starts to increase, so the speedups do not
present a perfect scalability with the addition of extra cores.

Figure 4 shows also the importance of the main memory
latency. The effect of having a fast or a slow main memory
is very important for a cache-based CMP, though it may not
seem that if one looks at the figure and realizes that the lines
of the main memory latencies are very close one from each
other, specially in chip configurations with β ≥ 1MB. What
happens is that in these chip configurations the L3 cache
miss ratios are very similar to the L3 cache miss ratio of the
baseline architecture, so they all are equally affected by the
latency of the main memory. This fact makes that, when
the speedup is calculated, the effect of the main memory

latency disappears due to the division of execution times.
When β < 1MB the effect of the latency of the main memory
can be observed in the figure, since these chip configurations
have higher L3 cache miss ratios than the baseline and so
their speedups vary depending on the latency. In Figure 4a
the chip configuration of 18 cores with 4.5MB of L3 cache
reaches a 2.15x speedup with a main memory latency of 120
cycles, decreasing to a 2.08x speedup with a main memory
latency of 480 cycles. Similarly, the chip configuration with
22 cores and 5.5MB of L3 cache in Figure 4b has a maximum
speedup of 2.63x with a latency of 120 cycles and 2.54x with
the slowest main memory, and the 28 core chip configuration
with 7MB of L3 cache in Figure 4c goes from 3.35x to 3.22x.

The aim of Figure 5 is to show the average bandwidth
requirements of cache-based CMPs. To ensure representa-
tive bandwidth requirements several main memory latencies
have been taken into account in the study. This figure shows
that for chip configurations with β ≥ 1MB the average band-
width required grows linearly due to the addition of cores
that have the same L3 cache miss ratios. When the L3 cache
gets smaller, the miss ratios increase and so the bandwidth
requirements do, showing a super-linear growth in the three
plots. In any case, the figure shows that all chip configura-
tions require average bandwidths that range between accept-
able limits, with a maximum average required bandwidth of
51.2GB/s. Although the range of average bandwidths is ac-
ceptable it has been detected that not all the loops have
the same bandwidth requirements: some of them have very
good hit ratios in all cache levels so they almost require
no bandwidth, while some others have huge data sets and
irregular accesses, so they need a much higher bandwidth.
For instance, the loop of the function compute indexmap in
the FT benchmark computes a sum and a product of three
values and stores the result to memory using a non-regular
access pattern. A lot of stores are issued at a fast pace and
the stores almost always miss in the L3 cache so the band-
width requirements are huge, more than 115GB/s in any
chip configuration. Similar behaviours can be observed in
other loops. On the other hand, some loops have minimal
bandwidth requirements, because of the regular access pat-
terns that do not provoke cache misses (many loops of the
CG and FT) or because the data set fits in the L3 cache
(any loop of the MG). This observation highlights the need
to quantify how many loops can be executed without any
performance penalty given a fixed and realistic bandwidth
for the different chip configurations.

Following that direction, Figure 6 shows what is the per-
centage of loop executions that can be handled without any
performance penalty when the provided bandwidth is lim-
ited. For each chip configuration, a stacked bar with ag-
gregated percentages is plotted. Each bar has four stacks
which show, from lower and darker to higher and lighter,
the percentage of executions that do not have bandwidth
requirements of more than 20GB/s, 35GB/s, 50GB/s and
65GB/s, respectively. The percentage is calculated as fol-
lows: for each chip configuration, the 28 loops have been
executed with the seven main memory latencies. That gives
196 executions for each chip configuration. It has been cal-
culated the bandwidth requirements of these 196 executions
and checked if they are lesser than thresholds of 20GB/s,
35GB/s, 50GB/s and 65GB/s, obtaining as a result the four
percentages shown in each stacked bar of the figure. Notice
that one of the FT loops, the one previously mentioned, has

8 cores
48MB L3

10 cores
40MB L3

13 cores
26MB L3

16 cores
16MB L3

17 cores
8.5MB L3

18 cores
4.5MB L3

CHIP CONFIGURATION

1.0

1.2

1.4

1.6

1.8

2.0

2.2

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(a) α = 0.25

8 cores
48MB L3

10 cores
40MB L3

14 cores
28MB L3

18 cores
18MB L3

20 cores
10MB L3

22 cores
5.5MB L3

CHIP CONFIGURATION

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(b) α = 0.33

8 cores
48MB L3

10 cores
40MB L3

16 cores
32MB L3

21 cores
21MB L3

25 cores
12.5MB L3

28 cores
7MB L3

CHIP CONFIGURATION

1.0

1.5

2.0

2.5

3.0

3.5

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(c) α = 0.5

Figure 4: Speedup of cache-based CMP configurations.

8 cores
48MB L3

10 cores
40MB L3

13 cores
26MB L3

16 cores
16MB L3

17 cores
8.5MB L3

18 cores
4.5MB L3

CHIP CONFIGURATION

10

15

20

25

30

35

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(a) α = 0.25

8 cores
48MB L3

10 cores
40MB L3

14 cores
28MB L3

18 cores
18MB L3

20 cores
10MB L3

22 cores
5.5MB L3

CHIP CONFIGURATION

10

15

20

25

30

35

40

45

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(b) α = 0.33

8 cores
48MB L3

10 cores
40MB L3

16 cores
32MB L3

21 cores
21MB L3

25 cores
12.5MB L3

28 cores
7MB L3

CHIP CONFIGURATION

10

15

20

25

30

35

40

45

50

55

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(c) α = 0.5

Figure 5: Bandwidth requirements of cache-based CMP configurations.

such a big required bandwidth that no chip configuration
can handle it with any of the provided bandwidths, so the
bars never reach the 100%. For chip configurations with up
to 10 cores, a 20GB/s bandwidth is capable of handling be-
tween 84.6% and 81.5% of the loops. This percentage drops
when more cores are added to the chip, to the point of only
being able to handle the execution of 56.5% of the loops in
the chip configuration with 28 cores and 7MB of L3 cache, in
Figure 6c. Having a bus that can deliver 35GB/s increases
this percentages in 9 to 15 per cent quite uniformly across
all chip configurations. Increasing the bandwidth to 50GB/s
slightly enlarges the set of covered loop executions for chip
configurations with 8 and 10 cores, with an increase of 4%,
it has an important impact in chip configurations with 13
to 17 cores, with increases around 11%, and it has a minor
impact in chip configurations with 18 cores or more, with
a maximum increase of 6.5%. Finally, a 65GB/s bus has
almost no benefits over a 50GB/s bus on chip configura-
tions with less than 17 cores but, in the range of 18 cores to
22 cores, it succeeds in executing an important number of
loops, increasing the percentage to a 91.4%. For the most
extreme chip configurations, the ones in the Figure 6c with
25 and 28 cores, this percentage is reduced to 83.5% and
81.5%, respectively.

Figure 7 shows the average speedup of the different chip
configurations against the baseline architecture when the
bandwidth is limited. Since it is very difficult to make an an-
alytical model of the performance penalty due to insufficient

provided bandwidth, the results of the loops that cannot
be executed with the fixed bandwidth have been discarded.
Notice that the results of the figure don’t differ from the
ones without bandwidth constraints. This means that the
non-fitting executions that have been discarded don’t change
the general trends and that the remaining experiments are
representative in order to take conclusions on the overall
behaviour.

Table 3: Best cache-based CMP configurations.

α 0.25 0.33 0.5
CHIP 18 cores 22 cores 28 cores

CONFIGURATION 4.5MB L3 5.5MB L3 7MB L3
BUS BANDWIDTH 65GB/s 65GB/s 65GB/s

SPEEDUP 2.13x 2.58x 3.31x
LOOP EXECUTIONS 91.4% 90.8% 81.5%

Table 3 shows the best cache-based CMP configurations
for the three values of α. These chip configurations are the
ones with higher speedups that can execute more than 80%
of the loops without penalizing their performance. The three
resulting chip configurations are 18 cores with 4.5MB of L3
cache for α = 0.25, 22 cores with 5.5MB of L3 cache for α
= 0.33 and 28 cores with 7MB of L3 cache for α = 0.5, all
of them with a bus of 65GB/s. The speedups obtained with
these three configurations are, respectively, 2.13x, 2.58x and
3.31x. Notice that the three best chip configurations are
obtained with β = 256KB. Also notice that, in general,

8 cores
48MB L3

10 cores
40MB L3

13 cores
26MB L3

16 cores
16MB L3

17 cores
8.5MB L3

18 cores
4.5MB L3

CHIP CONFIGURATION

0

20

40

60

80

100

PE
RC

EN
TA

GE

65 GB/s
50 GB/s
35 GB/s
20 GB/s

(a) α = 0.25

8 cores
48MB L3

10 cores
40MB L3

14 cores
28MB L3

18 cores
18MB L3

20 cores
10MB L3

22 cores
5.5MB L3

CHIP CONFIGURATION

0

20

40

60

80

100

PE
RC

EN
TA

GE

65 GB/s
50 GB/s
35 GB/s
20 GB/s

(b) α = 0.33

8 cores
48MB L3

10 cores
40MB L3

16 cores
32MB L3

21 cores
21MB L3

25 cores
12.5MB L3

28 cores
7MB L3

CHIP CONFIGURATION

0

20

40

60

80

100

PE
RC

EN
TA

GE

65 GB/s
50 GB/s
35 GB/s
20 GB/s

(c) α = 0.5

Figure 6: Percentage of executable loops in cache-based CMP configurations with bandwidth constraints.

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
13 cores 26MB L3

16 cores 16MB L3
17 cores 8.5MB L3
18 cores 4.5MB L3

(a) α = 0.25

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
14 cores 28MB L3

18 cores 18MB L3
20 cores 10MB L3
22 cores 5.5MB L3

(b) α = 0.33

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
16 cores 32MB L3

21 cores 21MB L3
25 cores 12.5MB L3
28 cores 7MB L3

(c) α = 0.5

Figure 7: Speedup of cache-based CMP configurations with bandwidth constraints.

aggressive cache-based CMP designs are very sensible to how
the chip is connected to the memory subsystem, since their
performance varies significantly when changing the latency
of the main memory and they require a powerful bus of
65GB/s to be able to satisfy the bandwidth requirements in
many of the loops.

5.2 Hybrid memory CMPs
In the previous section it has been concluded that ag-

gressive configurations of cache-based CMPs are capable of
reaching notable speedups at the cost of imposing some ar-
chitectural requirements such as a fast main memory and a
wide bus. In this section hybrid memory CMPs are evalu-
ated from the point of view of performance and bandwidth
requirements. It is also shown how local memories alleviate
the impact of having modest off-chip components. In this
section it has been followed the same steps as in the previous
section, computing ideal speedups and their corresponding
bandwidth requirements to later fix a provided bandwidth
and, from there, chose the best chip configuration for a hy-
brid memory CMP.

The average speedups obtained with all the hybrid mem-
ory CMP configurations against the baseline architecture
can be observed in Figure 8. The figure shows the be-
haviour of the different chip configurations in three plots,
one per each value of α, and assuming infinite bandwidth,
which means ignoring the overhead explained in Figure 3
and calculated in Equation 3.

The first important observation from Figure 8 is that in
the direct comparison between an 8 core cache-based CMP
and an 8 core hybrid memory CMP the latter clearly outper-
forms the former, with speedups that range between 1.11x
and 1.75x, depending on the latency of the main memory.
This proofs that the introduction of local memories has a
good performance, achieving significant speedups even in
chip configurations with a big L3 cache.

Figure 8 shows also the scalability of the hybrid memory
CMPs. Chip configurations with β ≥ 1MB show a perfect
scalability, while the scalability drops in chip configurations
with β < 1MB. The same behaviour can be observed in a
cache-based CMP, as explained in the previous subsection.
In any case, the results show that any chip configuration of a
hybrid memory CMP outperforms the baseline architecture,
with performance gains that go from 1.11x with 8 cores and
a slow main memory to 5.75x with 28 cores and a fast main
memory.

The importance of the latency of the main memory can
be also withdrawn from Figure 8, taking a look at the sepa-
ration between the lines. It can be observed that the slower
the main memory the higher speedups are achieved in all
chip configurations. For instance, in the 8 core chip con-
figurations the speedup goes from 1.11x with 480 cycles to
1.75x with 120 cycles, a 0.64x difference. This difference
grows with the addition of cores, reaching a 1.96x differ-
ence (from 5.75x to 3.79x) in the 28 core with 7MB of L3
cache chip configuration, in Figure 8c. The reason is that

8 cores
48MB L3

10 cores
40MB L3

13 cores
26MB L3

16 cores
16MB L3

17 cores
8.5MB L3

18 cores
4.5MB L3

CHIP CONFIGURATION

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(a) α = 0.25

8 cores
48MB L3

10 cores
40MB L3

14 cores
28MB L3

18 cores
18MB L3

20 cores
10MB L3

22 cores
5.5MB L3

CHIP CONFIGURATION

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(b) α = 0.33

8 cores
48MB L3

10 cores
40MB L3

16 cores
32MB L3

21 cores
21MB L3

25 cores
12.5MB L3

28 cores
7MB L3

CHIP CONFIGURATION

1

2

3

4

5

6

SP
EE

DU
P

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(c) α = 0.5

Figure 8: Speedup of hybrid memory CMP configurations.

8 cores
48MB L3

10 cores
40MB L3

13 cores
26MB L3

16 cores
16MB L3

17 cores
8.5MB L3

18 cores
4.5MB L3

CHIP CONFIGURATION

100

200

300

400

500

600

700

800

900

1000

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(a) α = 0.25

8 cores
48MB L3

10 cores
40MB L3

14 cores
28MB L3

18 cores
18MB L3

20 cores
10MB L3

22 cores
5.5MB L3

CHIP CONFIGURATION

0

200

400

600

800

1000

1200

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(b) α = 0.33

8 cores
48MB L3

10 cores
40MB L3

16 cores
32MB L3

21 cores
21MB L3

25 cores
12.5MB L3

28 cores
7MB L3

CHIP CONFIGURATION

0

200

400

600

800

1000

1200

1400

1600

RE
QU

IR
ED

 B
AN

DW
ID

TH
 (G

B/
s)

120 cycles
180 cycles
240 cycles
300 cycles
360 cycles
420 cycles
480 cycles

(c) α = 0.5

Figure 9: Bandwidth requirements of hybrid memory CMP configurations.

the hybrid memory cores use the bandwidth only during the
control part, which is a small period of time compared to the
work part. Obviously, the DMA transfers that get data from
main memory benefit from having a fast main memory, and
this is reflected in a shorter control part, but the work part
is not affected by the main memory latency. In the case of
a cache-based CMP, like the baseline, the whole execution
time benefits from having a faster main memory, making
the whole execution time lower than the one obtained with
a slow main memory. This variance in the execution time
of cache-based CMPs is what causes the differences in the
speedup of hybrid memory CMP configurations against the
baseline when the latency of the main memory varies. Con-
sequently, the importance of the main memory latency is
minimal in hybrid memory CMPs.

Figure 9 shows the average bandwidth required for the
execution of the 28 loops for each chip configuration. This
figure, like the previous one, ignores the interleaving in the
usage of the bus explained in Figure 3. It is clear that any
chip configuration with any main memory latency requires
an exaggerated amount of bandwidth, from 111GB/s in the
most modest chip configurations in terms of number of cores
and main memory latency to more than 1500GB/s with 28
cores and a latency of 120 cycles, in Figure 9c. These num-
bers show what should be the provided bandwidth in order
to maintain the performance in all the cores, allowing all
of them to execute their DMA phases at the same time and
then leaving the bus unutilized during their work parts. This

implies that the bandwidth required by a single core during
its DMA phase, which is already high due to the nature of
the DMA engine, has to be multiplied by the number of
cores in the chip configuration in order to allow them all
to move the data concurrently without performance penal-
ties, resulting in an unfeasible required bandwidth. These
unacceptable required bandwidths motivate the use of some
mechanism that guarantees that two control parts will not
be executed in parallel, that is why this paper proposes to
interleave the usage of the bus.

Figure 10 shows the actual speedups obtained when band-
width restrictions are applied. Having a limited bandwidth
means the provided bandwidth is fixed by the bus and its us-
age is interleaved between the cores, according to Figure 3.
The figure shows that fixing the bandwidth limits the scala-
bility: for any bandwidth, the chip configurations with β ≥
1MB present increasing but not linear speedups, meaning
that the increment of bandwidth requirements due to the
addition of cores can be handled by the bus only for some
loops, but for some others it cannot, so performance penal-
ties appear as described in Equation 3. For chip configura-
tions that have β < 1MB the required bandwidth cannot be
handled by the bus in most of the executions and the perfor-
mance drops due to the wait times imposed by the interleav-
ing mechanism. The magnitude of the drop varies depending
on the bandwidth provided by the bus: in Figure 10a, with
a 20GB/s bus the 18 core chip configuration performs worst
than the 16 core chip configuration, while with a 65GB/s the

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
13 cores 26MB L3

16 cores 16MB L3
17 cores 8.5MB L3
18 cores 4.5MB L3

(a) α = 0.25

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
14 cores 28MB L3

18 cores 18MB L3
20 cores 10MB L3
22 cores 5.5MB L3

(b) α = 0.33

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
16 cores 32MB L3

21 cores 21MB L3
25 cores 12.5MB L3
28 cores 7MB L3

(c) α = 0.5

Figure 10: Speedup of hybrid memory CMP configurations with bandwidth constraints.

18 core chip configuration performs slightly better than the
16 core chip configuration. The reason behind this is that
the more modest the bus bandwidth, the larger the waiting
times, having a bigger penalty in performance.

Figure 10 also shows that the speedup obtained with any
given chip configuration decreases as the bus bandwidth is
increased. Take, for instance, the chip configuration with
14 cores and 28MB of L3 cache in Figure 10b. It can be
seen that the speedup with a bus bandwidth of 20GB/s is
2.49x, 2.25x with 35GB/s, 2.14x with 50GB/s and 2.09x
with 65GB/s. The effect of the waiting time in this chip
configuration is negligible because the number of cores is
relatively small. What happens is that the baseline archi-
tecture takes a bigger profit of the increasing bus band-
width than the hybrid memory CMP configuration, so the
speedups against the baseline architecture decrease when the
provided bandwidth gets higher.

Table 4: Best hybrid memory CMP configurations.

α 0.25 0.33 0.5
CHIP 16 cores 22 cores 21 cores

CONFIGURATION 16MB L3 5.5MB L3 21MB L3
BUS BANDWIDTH 20GB/s 20GB/s 20GB/s

SPEEDUP 2.62x 2.83x 3.06x

The summary of the best chip configurations for a hybrid
memory CMP is shown in Table 4. The best chip configu-
rations for α = 0.25, α = 0.33 and α = 0.5 are, respectively,
16 cores with 16MB of L3 cache, 22 cores with 5.5MB of
L3 cache and 21 cores with 21MB of L3 cache, all of them
with a bus of 20GB/s. The speedups reported by these chip
configurations are 2.62x, 2.83x and 3.06x, respectively. In
this case of hybrid memory CMPs, for α = 0.25 and α =
0.5 the best chip configurations are obtained with β = 1MB
while, when α = 0.33, having β = 256KB slightly improves
βs of 512KB and 1MB. In general, it can be concluded that
hybrid memory CMPs achieve a very good performance and,
unlike cache-based CMPs, they are able to keep the perfor-
mance level even with a modest memory subsystem.

5.3 Comparison between cache-based CMPs
and hybrid memory CMPs

This section compares the performance of hybrid memory
CMPs and cache-based CMPs in all their chip configura-
tions, taking into account a fixed provided bandwidth.

The average speedup of the hybrid memory CMP config-
urations over the cache-based CMP configurations is shown
in Figure 11. The loop executions on the cache-based chip
configurations that require more bandwidth than what is
provided by the bus are discarded. When this happens, the
corresponding loop executions on the same chip configura-
tion of a hybrid memory CMP are also discarded, for fair-
ness.

Figure 11 shows that almost all the chip configurations
achieve speedups no matter the chip configuration nor the
bandwidth provided by the bus. The only exception is the
chip configuration with 28 cores and 7MB of L3 cache, in
Figure 11c, when the bus has a bandwidth of 50GB/s or
more. In this case, the cache-based CMP configuration has
a 1% speedup over the same chip configuration in a hybrid
memory CMP. It can be observed that the speedups range
from 1x (no improvement) to 1.74x, and the factors that
determine the speedup are the number of cores and the pro-
vided bandwidth.

In any plot of Figure 11, given a particular bandwidth con-
straint, the speedup factor decreases as the number of cores
in the chip configurations increases. The most affected set of
chip configurations are the ones with 20GB/s in Figure 11c,
where speedups go from 1.74x with 8 cores to 1.08x with
28 cores. The reason is that the scalability of cache-based
CMPs is perfect up to 16 cores, while in hybrid memory
CMPs the interleaving of the usage of the bus limits the
scalability. With more than 16 cores hybrid memory CMPs
suffer this problem heavily, much more than what cache-
based CMPs suffer from the increase in the L3 cache miss
ratio. This unbalance in the performance penalties is what
provokes that the speedup decreases as cores are added to
the chip.

The impact of the provided bandwidth can be clearly seen
if one looks at the speedups of a single chip configuration in
a single plot. In any chip configuration, its speedup with
a bus of 20GB/s is greater than its speedup with a bus of
35GB/s, which at the same is greater than the speedup with
50GB/s, and so on. In the case of the chip configuration with
13 cores and 26MB of L3 cache, for instance, the speedups
are 1.49x, 1.42x, 1.3x and 1.22x. This is because the cache-
based CMPs take more profit of a higher bus bandwidth, as
explained in Section 5.2. This greater benefit is the responsi-
ble for the speedup decrement when the provided bandwidth
is augmented.

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
13 cores 26MB L3

16 cores 16MB L3
17 cores 8.5MB L3
18 cores 4.5MB L3

(a) α = 0.25

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
14 cores 28MB L3

18 cores 18MB L3
20 cores 10MB L3
22 cores 5.5MB L3

(b) α = 0.33

20 35 50 65
BANDWIDTH (GB/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SP
EE

DU
P

8 cores 48MB L3
10 cores 40MB L3
16 cores 32MB L3

21 cores 21MB L3
25 cores 12.5MB L3
28 cores 7MB L3

(c) α = 0.5

Figure 11: Speedup of hybrid memory CMP configurations against cache-based CMP configurations.

It is also interesting to compare the best chip configura-
tions of a kind of CMP with the corresponding chip con-
figurations of the other kind of CMP. The best chip con-
figurations have been selected in Sections 5.1 and 5.2 and
summarized in Tables 3 and 4. The best chip configuration
of cache-based CMPs with α = 0.25, which is composed
of 18 cores, a 4.5MB L3 cache and a 65GB/s bus, is out-
performed by the symmetric chip configuration of hybrid
memory CMPs by 1.14x. The other two best chip configu-
rations of cache-based CMPs perform very similar to their
corresponding chip configurations of hybrid memory CMPs:
the hybrid memory CMP is 1.03x faster in the chip config-
uration of 22 cores and 5.5MB of L3 cache with a bus of
65GB/s, while with the chip configuration of 28 cores, 7MB
of L3 cache and a bus of 65GB/s the cache-based CMP is
1.01x faster. Contrariwise, the three best chip configura-
tions of hybrid memory CMPs achieve moderate speedups
against the corresponding chip configurations of cache-based
CMPs. The speedup of the chip configuration with 16 cores,
16MB of L3 cache and a 20GB/s bus is 1.38x, the speedup
of the chip configuration with 22 cores, 5.5MB of L3 cache
and a 20GB/s bus is 1.23x and the speedup of the chip con-
figuration with 21 cores, 21MB of L3 cache and a 20GB/s
bus is 1.34x.

In conclusion, the hybrid memory CMPs perform better
than cache-based CMPs with almost all the configurations,
with speedups of up to 1.74x. In two cases, cache-based
CMPs outperform hybrid memory CMPs by 1.01x. The best
chip configuration in the direct comparison is the one with
8 cores, 48MB of L3 cache and a bus bandwidth of 20GB/s.
Adding a lot of cores penalizes the hybrid memory CMPs
because of the overhead introduced by the bus usage inter-
leaving and having a bus with a higher bandwidth benefits
the cache-based CMPs much more than the hybrid memory
CMPs.

6. CONCLUSIONS
This paper explores the design space of CMPs with caches

and local memories in order to find an efficient chip con-
figuration for HPC applications. Specifically, two types of
CMPs are compared: CMPs composed of cores with a tra-
ditional cache hierarchy, or cache-based CMPs, and CMPs
composed of cores with a local memory side to the cache
hierarchy, or hybrid memory CMPs. The design space ex-
ploration contemplates different design parameters such as

the number of cores, the size of the shared L3 cache and bus
bandwidth. The presented results show the performance of
the different chip configurations for 28 computational loops
of the NAS benchmark suite. It is presented a discussion
of what is the impact of varying each design parameter on
the two kinds of CMPs separately, to finally make a direct
comparison between them.

Results show that cache-based CMPs are very efficient
when the number of cores and the bus bandwidth are very
high. Configurations of 18 cores with 4.5MB of L3 cache,
22 cores with 5.5MB of L3 cace and 28 cores with 7MB of
L3 cache achieve, respectively, speedups of 2.13x, 2.58x and
3.31x with a bus of 65GB/s when compared to a cache-based
CMP with 8 cores and 48MB of L3 cache. The best chip
configurations of hybrid memory CMPs, which are 16 cores
with 16MB of L3 cache, 22 cores with 5.5MB of L3 cache and
21 cores with 21MB of L3 cache, achieve 2.62x, 2.83x and
3.06x speedups with a 20GB/s bus against the same baseline.
It has been also seen that hybrid memory CMPs outperform
their symmetric cache-based CMP configurations in the vast
majority of the cases, with a maximum speedup of 1.74x.
The variation of design parameters affects the two kind of
CMPs differently. Adding cores is very beneficial for cache-
based CMPs but limits the performance of hybrid memory
CMPs. On the other hand, cache-based CMPs need a very
high provided bandwidth while hybrid memory cores are
much less sensible to this parameter.

7. REFERENCES
[1] AMD 2006 Technology Analyst Day: Official

Introduction of K10 Microarchitecture.

[2] http://www.hypertransport.org.

[3] Intel Core i7 Processor Extreme Datasheet. November
1 2008.

[4] The SCC Platform Overview. Revision 0.7. May 24
2010.

[5] Top 500 Supercomputer Sites List. November 2010.
http://www.top500.org/lists/2010/11.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. In SC
’91: Proceedings of the 1991 Conference on
Supercomputing, pages 158–165, Albuquerque, New

Mexico, USA, November 18-22 1991. IEEE Computer
Society.

[7] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan,
and P. Marwedel. Scratchpad Memory: A Design
Alternative for Cache On-chip memory in Embedded
systems. In CODES ’02: Proceedings of the 10th
International Symposium on Hardware/Software
Codesign, pages 73–78, Estes Park, Colorado, USA,
May 6-8 2002. ACM.

[8] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro,
and E. Ayguadé. Local Memory Design Space
Exploration for High-Performance Computing. The
Computer Journal, March 2010.

[9] M. Ekman and P. Stenstrom. Performance and Power
Impact of Issue-width in Chip-Multiprocessor Cores.
In ICPP ’03: Proceedings of the 32nd International
Conference on Parallel Processing, pages 359–368,
Kaohsiung, Taiwan, October 6-9 2003. IEEE
Computer Society.

[10] M. Gonzàlez, N. Vujic, X. Martorell, E. Ayguadé,
A. E. Eichenberger, T. Chen, Z. Sura, T. Zhang,
K. O’Brien, and K. O’Brien. Hybrid Access-Specific
Software Cache Techniques for the Cell BE
Architecture. In PACT ’08: Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, pages 292–302, Toronto,
Ontario, Canada, October 25-29 2008. ACM.

[11] M. D. Hill and M. R. Marty. Amdahl’s Law in the
Multicore Era. IEEE Computer, 41(7):33–38, July
2008.

[12] J. Huh, D. Burger, and S. W. Keckler. Exploring the
Design Space of Future CMPs. In PACT ’01:
Proceedings of the 10th International Conference on
Parallel Architectures and Compilation Techniques,
pages 199–210, Barcelona, Spain, September 8-12
2001. ACM.

[13] J. Kahle. The Cell Processor Architecture. In MICRO
38: Proceedings of the 38th International Symposium
on Microarchitecture, pages 3–4, Barcelona, Spain,
November 12-16 2005. IEEE Computer Society.

[14] M. Kandemir, O. Ozturk, and M. Karakoy. Dynamic
On-Chip Memory Management for Chip
Multiprocessors. In CASES ’04: Proceedings of the
2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems,
pages 14–23, Washington, DC, USA, September 22-25
2004. ACM.

[15] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core
architecture optimization for heterogeneous chip
multiprocessors. In PACT ’06: Proceedings of the 15th
International Conference on Parallel Architectures and
Compilation Techniques, pages 23–32, Seattle,
Washington, USA, September 16-20 2006. ACM.

[16] R. Kumar, V. V. Zyuban, and D. M. Tullsen.
Interconnections in Multi-Core Architectures:
Understanding Mechanisms, Overheads and Scaling.
In ISCA ’05: Proceedings of the 32nd International
Symposium on Computer Architecture, pages 408–419,
Madison, Wisconsin, USA, June 4-8 2005. IEEE
Computer Society.

[17] J. Leverich, H. Arakida, A. Solomatnikov,
A. Firoozshahian, M. Horowitz, and C. Kozyrakis.

Comparing Memory Systems for Chip
Multiprocessors. SIGARCH Computer Architecture
News, 35(2):358–368, May 2007.

[18] J. Li and J. F. Mart́ınez. Power-Performance
Implications of Thread-level Parallelism on Chip
Multiprocessors. In ISPASS ’05: Proceedings of the 5th
International Symposium on Performance Analysis of
Systems and Software, pages 124–134, Austin, Texas,
USA, March 20-22 2005. IEEE Computer Society.

[19] J. Li and J. F. Mart́ınez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip
Multiprocessors. In HPCA ’06: Proceedings of the
12th International Symposium on High-Performance
Computer Architecture, pages 77–87, Austin, Texas,
USA, February 11-15 2006. IEEE Computer Society.

[20] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron.
CMP Design Space Exploration Subject to Physical
Constraints. In HPCA ’06: Proceedings of the 12th
International Symposium on High-Performance
Computer Architecture, pages 17–28, Austin, Texas,
USA, February 11-15 2006. IEEE Computer Society.

[21] M. Monchiero, R. Canal, and A. González.
Power/Performance/Thermal Design-Space
Exploration for Multicore Architectures. IEEE
Transaction on Parallel and Distributed Systems,
19(5):666–681, May 2008.

[22] R. Murphy. On the Effects of Memory Latency and
Bandwidth on Supercomputer Application
Performance. In IISWC ’07: Proceedings of the 10th
International Symposium on Workload
Characterization, pages 35–43, Boston, Massachusetts,
USA, September 27-29 2007. IEEE Computer Society.

[23] J. L. Shin, K. Tam, D. Huang, B. Petrick, H. Pham,
C. Hwang, H. Li, A. Smith, T. Johnson,
F. Schumacher, D. Greenhill, A. S. Leon, and
A. Strong. A 40nm 16-core 128-thread CMT SPARC
SoC processor. In ISSCC ’10: Proceedings of the 2010
International Symposium on Solid-State Circuits
Conference, pages 98–99, San Francisco, California,
USA, February 7-11 2010. IEEE Computer Society.

[24] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C.
Rubio, F. Rawson, and J. B. Carter. Architecting for
Power Management: The IBM R© POWER7TM

Approach. In HPCA ’10: Proceedings of the 16th
International Symposium on High-Performance
Computer Architecture, pages 1–11, Bangalore, India,
January 9-14 2010. IEEE Computer Society.

[25] M. T. Yourst. PTLsim: A Cycle Accurate Full System
x86-64 Microarchitectural Simulator. In ISPASS ’07:
Proceedings of the 7th International Symposium on
Performance Analysis of Systems and Software, pages
23–34, San Jose, California, USA, April 25-27 2007.
IEEE Computer Society.

