
ÉCOLE POLYTECHNIQUE
Promotion X2002
Levillain Olivier

Stage d’Option Scientifique

Comparison of several grid
monitoring tools

Rapport Non Confidentiel

Option : Informatique
Champ de l’option : Architecture des Ordinateurs et Parallélisme
Directeur de l’option : Gilles Dowek
Directeur du stage : Jesús Labarta
Dates du stage : 2 Mai - 15 Juillet 2005
Adresse de l’organisme : Universitat Politècnica de Catalunya

Dep. d’Arquitectura de Computadores
Jordi Girona, 1-3
Mòdul D6 Campus Nord
08034 Barcelona (SPAIN)

1

2

Comparison of several grid monitoring tools

Olivier Levillain ∗

olivier.levillain@polytechnique.org

Francesc Guim Bernat †

guim@ac.upc.edu

Ivan Rodero †

irodero@ac.upc.edu

Julita Corbalán †

juli@ac.upc.edu

Jesús Labarta †

jesus@ac.upc.edu

Abstract Grids allow large scale resource-sharing accross different ad-
ministrative domains. Those diverse resources are likely to join or quit the
grid at any moment, or possibly to break down. Thus grid monitoring is a
complex task. The current usage of monitoring service is not very far from
the usage of information service as they essentially track down breakdowns
and give a more precise idea of the resource availability and load. How-
ever, job-oriented monitoring can be used for accounting purposes. Fine-
grain resource-oriented monitoring can also allow more precise forecasting
for resource allocation policies. The aim of this paper is to compare some
existing monitoring tools, mainly on the following points: fine-grain resource
monitoring, extensibility and integrability, possible solutions for job-oriented
monitoring.

Résumé Les grilles de calcul permettent le partage de ressources très va-
riées au travers de plusieurs domaines administratifs. Ces ressources sont
susceptibles de rejoindre ou de quitter la grille à tout moment, et peuvent
éventuellement tomber en panne. Ainsi, la surveillance de la grille est une
tâche complexe. L’utilisation des outils de surveillance ressemble aujourd’hui
à celle des systèmes d’information car ils servent à repérer les pannes et à
donner une idée plus précise des ressources disponibles et de leur charge.
Cependant, la surveillance au niveau des jobs peut être utilisée à des fins
de décompte. La collecte d’informations détaillées sur les ressources per-
met également de meilleures prévisions pour les politiques d’allocation des
ressources. Le but de ce rapport est de comparer quelques outils de monitor-
ing, en particulier sur l’existence de données détaillées sur les ressources,
les possiblités d’extension et d’intégration, et les solutions envisageables pour
l’observation des jobs.

∗École Polytechnique, Palaiseau, France
†Departement d’Arquitectura de Computadores, Universitat Politècnica de Catalunya,

Barcelona, España

3

Contents

Abstract 3

1 Introduction 5

1.1 The Grid . 5
1.2 GGF and the Grid Monitoring Architecture 7
1.3 How to use a Monitoring Service 10

2 Tools presentation 12

2.1 Monitoring and Discovery Service (Globus) 12
2.2 Mercury (GridLab) . 14
2.3 Network Weather Service . 19
2.4 G-PM/OCM-G (CrossGrid) 22
2.5 Ganglia . 25
2.6 GRIA . 28

3 Comparison 29

4 Related work 31

5 Conclusion 31

A Installing Mercury 32

B Adding a new sensor module in Mercury 34

C Installing Ganglia 38

D A simple job monitor with Ganglia 42

References 44

4

1 Introduction

In this report, we will introduce some existing grid monitoring tools and
describe their features. We are interested in information such as the kind of
resource monitored, at which level, the kind of API provided, and the way
they can be modified to fit our requirements.

The remainder of the document is organized as follows: in this first sec-
tion, we will first introduce the concept of grid computing and a monitoring
architecture proposed by the GGF (Global Grid Forum, an organisation try-
ing to define grid standards). Then we will define the goal of this study. The
second section is dedicated to the presentation of several existing monitoring
tools which will be compared in a table under different sorts of criteria, in
section 3. The fourth section is about other papers comparing different grid
monitoring tools. Finally, section 5 concludes this paper. Some appendices
give details about specific work done with two monitoring tools, Mercury
and Ganglia.

1.1 The Grid

Grid computing is a very general term describing a lot of different comput-
ing architectures, from internal grids (large commercial enterprises internal
networks organized to fully eploit their computing power) to “a service for
sharing computer power and data storage capacity over the Internet” (defi-
nition given by the CERN).

The way grids work has been summarized by the following points in [6]:

Resource sharing where resource can be computation power, storage fa-
cilities or specific software.

Security including access policies, authentification, authorization and data
encryption.

Efficient use of resources.

Death of Distance thanks to high speed networks.

Open standards by the Global Grid Forum (GGF) which is a sort of stan-
dards body for grid-specific standards.

Actually, the Grid is a way to present to users a virtual cluster embedded
in a distributed infrastructure, able to solve massive computational prob-
lems too big for any single supercomputer, or to provide a multi-user and
flexible environment to work on multiple smaller problems.

5

Grid computing is often confused with cluster computing. The key differ-
ences are that clusters are homogeneous in the sense their scale of resources
is small and these resources are all known; On the contrary, grids are very
heterogeneous in their scales of resources, sub-architectures and systems,
and the resource availability vary dynamically and so there is a need for
information services to follow the existing resources; also, grids spread out
and encompass user desktops while clusters are generally confined to data
centers; finally, grids are meant to be extended accross different admin-

istrative domains.

To handle the variety of resources and domains, grids need middleware
applications which represent the brain of the grid, whereas the different
computation resources would be the muscles and the networks connecting
those resources would be the nervous systems.

These middleware applications have to be distributed, flexible and scal-
able, to be fault tolerant and to be able to face the diversity of resources.
They also need to use secure authorization techniques so as to allow remote
users to control and monitor only their jobs and the resources these jobs are
using.

Figure 1: Grid general organization and middleware applications

Figure 1 shows the general organisation of grid computing. To under-
stand the different roles played by the grid components, let’s follow the life

6

of a job on the grid.

First, the user connects to the User Interface, which requires an authen-
tification. Once authorized, the user can submit a job, i.e. a program (e.g.
a 3D rendering ray tracer), the data it uses (the scene and the textures)
and a description of the job (the filenames, the owner) and its requirements;
these requirements can concern hardware (architecture, minimum memory
space needed, etc) and software (libraries or programs needed).

Then the Broker will try and find the best resources to meet all the
requirements of the Job Description; it grabs information from the Informa-
tion Service, a distributed component listing the available resources of the
grid.

When resources are found, the job is submitted to a cluster1 where the
Local Job Manager executes the program, according to the Job Description.
At the end of the job, the result is sent back to the Broker and to the user
through the Interface.

During the execution of the job, the user can check which resources have
been allocated to his job and known for how long it had been running; this
information is collected and brought to the user by the Monitoring Service.
When the application is instrumented, it is even possible with some Moni-
toring Tools to measure the performance and to forecast the remaining time,
as described in [7, 8, 16].

1.2 GGF and the Grid Monitoring Architecture

The Global Grid Forum (GGF) is a community of users, developers and
vendors aiming at defining specifications for grid computing. The forum
was created in 2001 from the merging of different forums around the world.
The Globus Alliance is a community of organizations and individuals im-
plementing these standards through the Globus Toolkit, which has become
the de facto standard for grid middleware.

The GGF Performance Working Group has developped a model for grid
monitoring tools called Grid Monitoring Architecture (GMA) in [21]. The
architecture they propose is designed to address the characteristics of Grid
platforms.

1In this document, we call a cluster every administrative domain handled by the grid.

7

The paper first lists which requirements such a monitoring tool should
meet. Then it presents the GMA model.

Requirements

Low latency for delivering data and high data rate Performance
information has a fixed, often short, lifetime of utility. What is more, per-
formance data are often more frequently updated than requested, whereas
usual database programs are firstly designed for queries. This means per-
manent storage is not always necessary, and that the tool must be able to
answer quickly before the data is obsolete.

Scalability and Portablity A grid performance monitoring tool also
needs to handle many different types of resources accross different adminis-
trative domains and should be able to adapt when communication links or
other resources go down. The monitoring system should then be distributed.

Extensibility Depending on the use of the Grid, administrators and users
may want to monitor non standard entities and would like to add them. A
monitoring tool should provide a simple interface for adding new metrics2.

Security As users can only have access to their files, it should be the same
for the performance information given by the monitoring tool. So the tool
has to include authentification and authorization services to define access
policies.

Minimum intrusiveness What we finally expect is to keep up the per-
formance we are monitoring. That is why we must pay attention to every
resource used by the performance tool (processors, memory, storage and
network).

There is often a compromise to find sometimes between these require-
ments. For example, using active sensors to measure network performance
is more portable than passive OS-specific methods but also more intrusive.

Let’s now look at the structure described in the GGF’s paper.

Architecture proposed

The GMA is based on three types of components, producers, consumers and
the directory service (fig. 2).

2Metrics is a term often used for monitored data, as described further; for example,
the number of CPUs or the free memory are metrics supported by most tools

8

Figure 2: Grid Monitoring Architecture components

A producer is any component that can send events to a consumer, using
the producer interface (accepting subscription, queries and ability to notify).
In a monitoring tool, every sensor is encapsulated in a producer; however a
producer can be associated to many different sources: sensors, monitoring
systems, databases. A consumer is any component that can receive event
data from a producer. The consumer interface contains subscription / un-
subscription routines and query mechanisms.

To exchange data events, producers and consumers have a direct con-
nexion, but to initiate the dialog, they need the directory service. When
a consumer or a producer starts, it registers itself in the directory service.
Then when a consumer is looking for a producer to get data, it has to per-
form a research in the directory service. Thus, it is possible to bootstrap
correctly communication in a complex architecture and to incorporate secu-
rity, because directory service takes into account understood wire protocols
and security mechanisms. The directory service is in fact a distributed com-
ponent, locally accessible from every other components.

This architecture provides a flexible way of distributing the system. It
is possible to have a hierarchical distribution, with complex components
having both consumers and producers interfaces (for example, a monitoring
service can gather information from many producers/sensors, process them
and present to the grid user a producer interface). It is then allowed to have
data discovery, processing, storage and delivering separated, and to be able

9

Figure 3: GMA example: S = Sensor(s); P = Producer Interface; C =
Client Interface; LM = Local Monitor; CM = Cluster Monitor; GSS = Grid
Storage Service; UI = User Interface

to furnish a consumer interface through a firewall. An example of what can
be done following such recommendations is given fig. 3

We are now going to explain what we are aiming at doing with monitoring
services.

1.3 How to use a Monitoring Service

Grid Monitoring Services is different from Grid Information Services, even
if some toolkits as Globus furnish only one tool for both tasks. On the one
hand, Information Service is supposed to register all the resources available
in the grid. This corresponds to the Directory Service of the Grid Moni-
toring Architecture. Usually, Information Service works at cluster and grid
level. On the other hand, Monitoring Service also works at host level, to
get precise measurements thanks to host sensors and is looking for fresh and
fine-grain data.

However, it is clear that both services need each other and that is why
either they’re grouped or there is a little Monitoring Service inside the Infor-
mation one (and vice versa). For example, monitoring tools need to know
all the existing resources to be able to display the state of the cluster to
the user, and that’s why it needs a Directory Service. Information tools are

10

used to choose the resource to be allocated to a job, and sometimes it may
communicate with the monitoring tool to get detailed data about resource
load.

The current accounting mechanism is generally so simple as measuring
the cputime consumed by each user using some standard UNIX log mecha-
nism. However, this method doesn’t take into account many aspects of the
scheduling (e.g. we may want to pay attention to the time of day a job
was scheduled or to the priorities system in a time-shared system) nor other
resources than CPU (like memory, storage or TCP bandwith).

Similarly, many forecasting policies for launching new jobs are based on
poor information (only CPU load and number of users) whereas it could be
useful to know more fine-grain details about the use of all resources.

Thus our goal is to use some automatic mechanism to implement more
accurate monitoring. Information obtained with this mechanism could be
used in accounting, ensuring quality of service, or in forecasting, allowing
the display of relevant information for the user. In both case, we can see
the importance of having detailed resource monitoring information, and to
know which job is using which resource: this is what we call job-oriented
monitoring.

However, no monitoring tool can, alone, give job-oriented information.
Indeed, job-oriented monitoring involve the cooperation between several grid
middleware applications. A job is identified differently at grid, cluster and
host levels. Yet, we would like to have host and resource information about
jobs, and publish them at the grid level. We then have to let the monitoring
service be able to bind jobs to their processes.

In [1], the Gridlab team propose a simple way to have monitoring at the
job level. Once a job is submitted to the grid and the resources it will use are
chosen, the processes of this job shall be locally executed on a new account,
by a new Unix user. This allows the program to change its name and/or
to fork, and still to be recognizable because the owner of the processes are
uniquely associated to this job. What’s more, security is enforced by the
Unix users system.

Then, we only need to have a cooperation between the Monitoring Ser-
vice and the Job Manager to get the correspondance between the GJID
(Grid Job Id, identifying the job at the grid level) and the LJID (Local Job
Id, identifying the job at the cluster level) from the one side, and between
the Main Monitors and the Local Resource Mangement System to translate
LJIDs in user names and so to find the corresponding PIDs and the CPUs

11

used by every job.

Thus we see that job-oriented monitoring is possible if and only if the
grid middleware is cooperating, hence there is a need of standards to plug
different services together, and in this paper, we will try to give an idea of
the possibilities of integration of each tool.

2 Tools presentation

2.1 Monitoring and Discovery Service (Globus)

Institution: ANL, USC/ISI
Key persons: Karl Czajkowski, Ian Foster, Carl Kesselman
Web page: http://www.globus.org/toolkit/mds/
References: [9, 12, 3]

MDS is the Grid Information Service provided in the Globus Toolkit.
However it supports monitoring sensors to register to the Information Ser-
vice. It supports a hierarchical architecture with Index Services aggregating
the information collected from the Information Providers. Two version of
MDS are currently available; MDS-2 uses the Open LDAP protocol wheras
MDS-3 uses the Open Grid Services Infrastructure. MDS-4 is more or less
the reunion of both older versions.

Architecture

MDS consists of two types of elements: information provider (producers)
and data aggregation services. Fig. 4 represents this architecture; the GRIS
are the producers (replaced by Service Data Elements in MDS-3) and are
present at the cluster level. GIIS are in charge of the Directory Service (in-
dex of the resources available) and GRIS have to register regularly in GIIS
which aggregate this information to publish it to the user or to other GIIS.

In MDS-2, the protocol used is LDAP and in MDS-3 it uses the Open
Grid Services Infrastructure (OGSA). The data forma is LDIF (MDS-2) or
XML (MDS-3).

As we can see, GIIS can regroup some clusters to form Virtual Orga-
nizations (VO) and can also be organized hierarchically. Authentification
with GIIS is possible via LDAP or OGSA certificates.

Resource-level monitoring and host metrics

In fact, MDS does not really support fine-grain resource-level monitoring
and host metrics. GRIS only collect information using scripts executed pe-

12

Figure 4: MDS-2 architecture; GRIS: Grid Resource Information Service,
GIIS: Grid Index Information Service

riodically but it is also possible to add them because sensors can easily
communicate with MDS thanks to known protocols.

However, MDS is more designed to be an Information Service and not a
Monitoring tool, and the data given by the scripts is not updated frequently
enough. Having fine-grain monitoring data would suppose to add sensors
and to ask the GIIS hierarchy to refresh its data more often, which would
certainly be very intrusive because it was not designed this way.

Developper Interface and Integration

To get a real monitoring system from MDS, we would need to program new
sensors or try and integrate existing ones. Hopefully, adding sensors is pos-
sible, either by using the LDAP/OGSA interface, or by writing shell scripts.
What is more, MDS-3 offers a standard data format through XML channels.

Security

Authentification with GIIS is possible via LDAP or OGSA certificates, but
then users are authorized to see every resource in the VO. We will say that
it is a VO-level authorization policy. Thus, beside this concept of VOs, the
fine-grain access restriction in MDS could only be enforced outside the grid,
by a portlet for example.

13

Data transmission can be encrypted through Secure Sockets Layer /
Transport Layer Security (SSL/TLS) implementation.

Summary

MDS is an efficient Information Service and its architecture globally follows
the Grid Monitoring Architecture, but it was not design to fit all the re-
quirements needed for a Monitoring Tool. Indeed, even it may be extensible
enough, the data are not supposed to be refreshed frequently enough for
monitoring purpose. Different tools have then been developped to manage
only the monitoring task and we are going to see some of them in the next
sections.

2.2 Mercury (GridLab)

Institution: MTA SZTAKI
Key persons: Zoltán Balaton, Gábor Gombás, Péter Kacsuk
Web page: www.gridlab.org/WorkPackages/wp-11,

www.lpds.sztaki.hu
References: [19, 1, 17]

GridLab is a European research project developping application tools
and middleware for Grid environments. They produce a set of application-
oriented Grid services and toolkits providing capabilities such as dynamic
resource brokering, monitoring, data management, security, information,
adaptive services and more.

Among them, the Mercury Monitor is designed to satisfy requirements
of grid performance monitoring: it provides monitoring data represented as
metrics via both pull and push access semantics and also supports steering
by controls (also called actuators). It supports monitoring of grid entities
such as resources and applications in a generic, extensible and scalable way.
Its architecture is based on the GGF GMA, and implemented in a modular
way with emphasis on simplicity, efficiency, portability and low intrusiveness
on the monitored system. [1] gives an overview of this architecture.

Appendix A is a brief manual to install and configure Mercury on your
system.

Architecture

The design of the Mercury Monitoring System follows the recommendations
of the Grid Monitoring Architecture (GMA) published by the Global Grid
Forum [21].

14

The input of the monitoring system consists of measurements generated
by sensors. Sensors are embedded in producers that manage the generated
data and forward it to consumers. Sensors implement the measurement of
one or more measurable quantities called metrics.

Mercury supports both event-like metrics when measurements are trig-
gered by some external event (like log messages) and continuously measur-
able metrics when consumers must request the measurements explicitly (like
CPU utilization). In the second case, as no measurement is made until ex-
plicitely requested, the intrusiveness is reduced. It is also possible to turn a
continously measurable metric into a event-like one by requesting automatic
periodic measurements.

Mercury extends the GMA by introducing actuators to enable the ma-
nipulation of monitored objects. As sensors regroup metrics, actuators im-
plement one or more controls. But while metrics are used to gather data
about an object without noticeably disturbing its behavior, controls are used
to manipulate the monitored object.

Figure 5: Mercury architecture; S: Sensor, LM: Local Monitor, MM: Main
Monitor, MS: Monitoring Service

The Mercury Monitoring System has a distributed, hierarchical archi-
tecture (see fig. 5). A producer called the Local Monitor is running on
every machine. It collects information about application processes and grid

15

services running on that machine as well as information about the machine
itself.

Local Monitors are supervised by Main Monitors. The Main Monitor
distributes the requests it receives from remote consumers between the Lo-
cal Monitors, and forwards any data generated by the Local Monitors back
to the consumers. Local users can access those data directly by the Main
Monitors. Grid users are provided the data via the Monitoring Service,
which is a client of the Main Monitors.

Concerning reliability, Main Monitors - as Monitoring Services - can be
duplicated, and share the same set of underlying Local and Main Monitors.
Both duplicata won’t share any data, but, as data is only asked on client
demand, there won’t be any significant overload due to this duplication.

This architecture with several layers allows a Main Monitor to work as
a proxy, allowing data transmission even if parts of the grid are behind
firewalls.

Resource-level monitoring and host metrics

First, Mercury can give general information on the system, like the archi-
tecture, the name and version of the operating system, the boot time or the
list of the current users.

Concerning the CPU, Mercury can provide the following metrics:

• Number of CPUs (total installed, online and available),

• 1, 5 and 15 min. load averages,

• Frequency of the CPUs,

• Size of L1 and L2 cache,

• State of the CPUs (”Normal”, ”Offline”, ”Error”, ”PowerOff”, ”OS
only”, ”User only” or ”Restricted”) and the date they enter this state,
and

• CPU usage (per processor): time spent by the processor in

– user context,

– servicing system calls,

– waiting for external I/O to complete,

– idling,

– servicing hardware and software interrupts, and

16

– running niced processes.

Mercury also allows you to get information about disks and filesystems:

• Disks names, sizes and partitions

• Disks statistics

• Filesystems mounted

• Total, available and reserved space

Memory metrics are divided in 3 section:

• mem which gives the size and the usage of the memory (free memory,
size used for IO buffers and for cached files).

• swap which describes the swap space

• vm for the virtual memory (memory moves, page faults)

Finally, Mercury’s resource monitoring has a net section:

• List of interfaces with their status and addresses

• Statistics on incoming and outgoing traffic

• Counts of errors, drops and collisions

Job-oriented monitoring

As told in the introduction, the Gridlab suggests a solution to be able to
monitor the grid at the job level. A way to do it is to add modules to help
different services to communicate together.

We did not try to set up such a solution with Mercury, but appendix
B describes a method to add new modules in Mercury. Based on such
modules and on a communication between middleware applications, it could
be possible to publish job-related information with the Monitoring System.

Application-oriented monitoring and application metrics

With Mercury it is also possible to have a more specific application moni-
toring. It is provided through the app.* metrics and is based on the GRM
principles. GRM, GRid application Monitor [18, 2, 17], is an off-line mon-
itoring tool providing application monitoring for one-process instrumented

17

applications (i.e. applications with trace generation function calls) in the
grid environment.

GRM is based on a Local Monitor / Main Monitor architecture, and
is integrated into Mercury. [17] describes how this integration works. Ap-
plication monitoring for instrumented applications allows Mercury / GRM
to collect trace information. The main problem here is the need for an
instrumentation of the application with GRM calls, which means that the
job should be either recompiled with a specific compiler or instrumented by
the submitter himself. What’s more, GRM only provides an API for trace
functions in C.

Developper Interface and Integration

The Mercury sources are open. The whole tool was developped in C. ap-
pendix A describes the installation of Mercury monitoring tool.

From the producer side, adding sensors and actuators is possible, as new
modules (see appendix B). Even if programming a new module is a little
hard at first (due to the large amount of C macros needed to define the
structure of the module), the modular architecture of Mercury allows a sim-
ple way to add new components.

From the consumer point of view, we have to distinguish two kinds of
consumers; if the client is inside the grid (for example the broker trying to
forecast the use of the resources, so as to know whether to launch a new job
or not), the API is in C. The protocols used are Mercury specific channels
over TCP, using XDR (External Data Representation Standard, [20]) data
format.

Users outside the grid should use the Monitoring Service which is inte-
grated in a portlet which is part of the Gridlab project.

Security

By default, internally, anonymous IP authentification is used; though to
make sure only authorized processes access monitored data, Mercury has a
GSS-API authentification module, and it is also possible to write new mod-
ules for different authentification methods or to add an encryption layer
(which is not included).

The GSS-API (decribed in [13]) is both transport and mechanism inde-
pendent:

18

Transport independence means that GSS does not depend on a specific
communication method or library. Rather, each GSS call produces a
sequence of tokens which can be communicated via any communication
library an application may choose. Transport layers to include raw
TCP sockets, UDP, and Nexus.

Mechanism independence means that the GSS does not specify the use
of specific security algorithms, such as Kerberos, SESAME, DES or
RSA public key cryptography. Rather, the GSS-API is defined in
terms of security operations. Each operation can be implemented via
a range of different security mechanisms.

It is important to notice that Mercury authorization method does not
apply at the cluster or Virtual Organization level, but at the resource level,
through Access Control Lists, described in the configuration section of ap-
pendix B (in the Local and Main Monitor configuration files). It is thus
possible to have very fine-grain access policies.

Grid security rules and local policies are also enforced into the Monitor-
ing Service, allowing more dynamical access policies and possibly a cooper-
ation with the Job Submitter.

Summary

The original version of Mercury allows us to monitor many interesting met-
rics, and authentification inside the grid is already possible. If you want
to add metrics, controls, or authentification methods, you can write new
modules in C, but the problem is a lack of documentation about the module
format and the numerous C macros used in the existing modules.

So Mercury could be an interesting and evolutive solution for grid mon-
itoring, in case you have time to invest in adding the modules you really
need. The portlet GridLab provides for external Monitoring Service, coop-
erating with the job submitter may also be a very convenient solution to the
job monitoring problem.

2.3 Network Weather Service

Institution: University of California, Santa Barbara
Key persons: Rich Wolski, Martin Swany
Web page: nws.cs.ucsb.edu
References: [22]

19

Network Weather Service (NWS) is a distributed system for producing
short-term performance forecasts based on historical performance measure-
ments. NWS provides a set of system sensors for periodically monitoring
end-to-end TCP/IP performance (bandwidth and latency), available CPU
percentage, and available non-paged memory. Based on collected data, NWS
dynamically characterizes and forecasts the performance of network and
computational resources.

Architecture

Figure 6: A NWS implantation sample

The NWS is composed mainly of four types of servers:

• Directory service (nws_nameserver) registering the active servers
and the current monitoring activities. Every server must inform a
name server of its presence, and every client must dialog with the
name server to get monitoring data. The name server works with the
LDAP (Lightweight Directory Access Protocol, [11]) protocol.

• Persistent storage servers (nws_memory) allowing sensors to keep
previous measurements.

• Resource monitors (nws_sensor) providing monitoring skills and
controls.

• Forecasters (nws_forecast) using previous measurements to esti-
mate future resource availability.

An example of NWS implantation is described in fig. 6. We can see
that NWS follows the GGF recommandation about the existence of the

20

directory service, but it can not be distributed as in the Grid Monitoring
Architecture. You can indeed have duplicated or different directory services,
to create different Virtual Organizations (VO) as in Globus MDS, but all
the information of one Name Server will be gathered on one host, which may
be impossible in the grid context.

What is more, NWS does not provide a clear client / server interface, and
so does not allow a hierarchical architecture across different administrative
domains through firewalls. That is why we can say that NWS is more
designed for clusters or internal grids than for the other types of grid.

Resource monitoring

Here are the resources NWS is able to monitor:

• cpuMonitor gives the fraction of CPU available for both newly-
started and existing processes.

• diskMonitor indicates the space available on mounted partitions.

• memoryMonitor returns the amount of free memory available on
the machine.

• tcpConnectMonitor monitors the time required to establish a TCP
connection between a pair of machines.

• tcpMessageMonitor gives the bandwidth and the latency between
a pair of machines.

Sensors combine active and passive monitoring methods. NWS provides
periodic or single measurements, with forecasts when asked.

Developper Interface and Integration

NWS is a tool programmed in C. The code is not written in a modular way,
so adding new sensors involves modifying many different files and hard-coded
constants.

The tool is made of command line tools, and that is why it could easily
be integrated as an accurate sensor tool in another monitoring tool.

Security

NWS, like Globus MDS, does not provide any authorization method to re-
strict the access to monitored data inside the Virtual Organizations. The
authentification is made through LDAP certificates and then NWS apply

21

a VO-level authorization. What is more, there is no portlet or other user
interface furnished to enforce fine-grain access policies.

Summary

Finally, Network Weather Service does not seem to fit our needs, since its
architecture is not as distributed as we need, and can not be organized in
layers. Besides, NWS is not easy to modify. Yet it may be integrated as a
local component in a more complex grid monitoring service.

2.4 G-PM/OCM-G (CrossGrid)

Institution: Institute for Computer Science ICS-AGH and
CYFRONET, Technische Universität München

Key persons: Marian Bubak, Wlodzimierz Funika, Roland
Wismüller

Web page: grid.fzk.de/CrossGrid-WP2
References: [4, 5]

The OMIS (On-line Monitoring Interface Specification [14]) is an API
aiming at defining a standard interface for communication between various
types of runtime tools for parallel and distributed systems (including moni-
toring services in the grid). It was developped in 1996-97 in the Lehrstuhl für
Rechnertechnik und Rechnerorganisation Institut für Informatik in the Tech-
nische Univerität München. Today, OMIS is well documented, but doesn’t
seem to be much used in other grid projects than Crossgrid.

Later, the OCM-G (OMIS-Compliant Monitoring system for the Grid)
project started in München, based on a Grid-enhanced version of OMIS.
OCM-G is an application monitoring tool, which is part of the Crossgrid
project. It provides configurable online monitoring via a central manager
which forwards information requests to the local monitors. Crossgrid is also
providing G-PM (Grid-oriented Performance Measurement tool) which is a
graphical performance analysis tool that allows to request standard perfor-
mance metrics as well as user-defined metrics at runtime. The measured
data are periodically transferred from the monitor to the front end and
visualized via various performance diagrams.

Architecture of OCM-G

As we can see in fig. 7, OCM-G has a distributed architecture, with Appli-
cation Monitors (AM), linked into every Application Processes (AP) that
is monitored; with Local Monitors (LM) to gather information at the host
level; with Service Managers (SM) to collect data and to build the hierar-
chical structure of the monitoring system; and finally with a Main Service

22

Figure 7: OCM-G architecture

Manager (MainSM) to publish the data outside the grid.

When starting the monitoring, there has to be a Local Monitor running
on each host and the SMs hierarchy in place. What’s more, every application
that can be monitored has to be instrumented and recompiled with the
support of the Application Monitor library.

Application monitoring

OCM-G allows a fine-grain application monitoring, with trace events and
CPU usage monitoring, as long as the applications have been instrumented
with trace calls and linked to the Application Monitor library.

It is then possible to compare the efficiency of a function, eventually the
speedup of a loop by comparing loop instances when a different number of
processors are given to the process (see [7]).

23

The languages supported for instrumentation are C, C++ and FOR-
TRAN.

Performance analysis tool

OCM-G is part of the Crossgrid project, and it is an OMIS-compliant appli-
cation monitoring tool. Crossgrid also comes with a Performance analysis
and visualization tool which can work with all kind of OMIS-compliant mon-
itoring tools.

G-PM allows complex request, to determine higher-level performance
properties and application specific metrics. To provide this kind of infor-
mation, G-PM uses three sources of data: performance measurement data
related to the running application, measured performance data on the ex-
ecution environment, and results of micro-benchmarks (providing reference
values).

At first glance, G-PM looks like visualization tools like Paraver, but there
is a major difference between the Crossgrid tool and traditionnal tools: usual
approaches (Pablo, Paraver, etc) only support a centralized and offline anal-
ysis whereas G-PM architecture allows a distributed on-line computation of
raw data.

Developper interface and Integration

OCM-G is a very powerfool application monitoring tool, coded in C, and
open-source. To add new apps measurements, we just need to put more
trace calls and to recompile the programs. It can be integrated to other
systems, since the OMIS interface is clearly described in [14].

Security

RSA-based encrypted connections (through GSS-API) and user authentica-
tion prevent unauthorized access to monitored applications and data. How-
ever, it seems that the authorization only works at VO-level.

Summary

OCM-G is designed to monitor applications, and can not provide resource-
or job-oriented monitoring. Its structure also lacks of extensibility, and so
it does not fit our requirements. What is more, OCM-G (as G-PM) only
works on Linux systems. However, once available on different systems, it
could be used as a component of a bigger monitoring tool.

24

2.5 Ganglia

Institution: University of California, Berkeley, USA
Key persons: Matt Massie
Web page: http://ganglia.sourceforge.net/
References: [15]

Ganglia is a scalable distributed monitoring system for high-performance
computing systems such as clusters and Grids. It is based on a hierarchical
design targeted at federations of clusters, relies on a multicast-based lis-
ten/announce protocol to monitor state within clusters and uses a tree of
point-to-point connections amongst representative cluster nodes to federate
clusters and aggregate their state. Data is represented in XML and com-
pressed using XDR. The Ganglia Web Frontend can be used to inspect for
example CPU utilization in the last hour or last month.

Architecture

Figure 8: Ganglia architecture

Ganglia is based on a distributed and hierarchical structure represented
on fig. 8. On every grid node that is monitored, a gmond daemon is running
and collecting local data. It has four main responsibilities: monitor changes
in host state, announce relevant changes, listen to the state of all other gan-
glia nodes via a unicast or multicast channel and answer requests for an
XML description of the cluster state. gmonds are meant to communicate

25

with every other gmond, so as any node may be able to know the status of
the entire cluster. However, even if the data transmitted are reduced to the
minimum (only when relevant changes happens) this may cause a significant
network overload inside the cluster.

At cluster level, the data are collected by gmetad daemons by polling
following a round-robin algorithm, thus distributing the load. There can be
many different levels of gmetad applications, which can gather monitoring
information from gmonds as well as from gmetads. They will play the role
of proxies for every administrative domain; they can be replicated to make
the system more reliable. Yet there may still be a problem of network intru-
siveness because gmetads do not share data and are permanently gathering
fresh updates.

Measurements are made periodically by gmond daemons, following the
configuration given at startup. Communication between Ganglia agents use
XDR over UDP or XML over TCP. At every level, users inside or outside
the grid can connect to Ganglia through a PHP website.

A major drawback of Ganglia is that it has no real registration method.
The gmetads have to know who is under their responsibility at startup. They
will read the addresses of the daemons to query in a configuration file. That
involoves the global structure of the grid must be known at startup; adding
new hosts in a cluster would be possible, but new clusters could be difficult
and restarting some daemons could be needed.

Ressource-level monitoring and host metrics

For each node, host metrics are nearly the same as in Mercury:

• OS name and release, machine type, boot time

• CPU numbers, speed, usage and average load

• Memory info (total, free, shared, buffers, cached)

• Swap info

• Disk info

• Network interfaces traffic

Job-level resource

Concerning job-level resource, we are confronted to the problem exposed in
the introduction: the Monitoring System has to collaborate with the Job

26

Manager and the Local Resource Manager to get the correspondance be-
tween Grid Job IDs and PIDs.

Since Ganglia doesn’t support arguments in metrics queries, it may be
hard to create a metric giving the CPU usage for each process. However, de-
pending on the number of interesting processes, we could create user-defined
metrics for each process we decide to monitor.

In fact, in appendix D, that is a solution we have been working on.
When a job is submitted with our very simple job submitter, the metrics
associated (number of processes, CPU load) to the job are created and the
processes are launched under a certain Unix user. Then these metrics are
periodically updated.

Developper Interface and Integration

Ganglia is an open-source project written in C. The metrics are not coded
as different modules to add at gmond startup, so it may be very hard to add
metrics in the C code.

However, Ganglia provides another way to add metrics: the command
line program gmetrics. For example, if we have a program cputemp out-
puting the CPU temperature, it is easy to add a new metric by running
periodically (with cron for instance) the following command line:

% gmetric --name temperature --value ‘cputemp‘ --type int16 --units Celcius

The exit code tells whether the data was correctly sent or not.

Yet, in Ganglia the metrics queries cannot carry arguments (the only
implicit argument is the host who the query is made to), and we may some-
times need to access the same metrics for different elements (processes for
example) of the same hosts.

At the user end, the PHP web site publishing the data may be integrated
and modified for more specific purposes.

Security

Concerning authentification methods, from inside or outside the grid, the
only way available is IP authentification. Then there is no restriction in
authorization, except that you have to see the machine you are asking in-
formation.

27

Summary

Ganglia is a project working on many different platforms, providing efficient
monitoring in standard formats and also a simple way to register new met-
rics. As explained in appendix D, it can then be possible to establish an easy
and simple job monitoring by associating the job submission to the metrics
registration.

However, the communication between daemons, which ensures the fresh-
ness of data, may be too intrusive in a grid context, even if compressed for-
mats can be used and if the load is distributed by a round-robin algorithm.
What’s more, the multicast used to simplify information sharing between
a cluster’s node may not be available, and so unicast, more expensive in
network resources, should be used between every nodes. Finally, Ganglia
won’t suit very dynamic grids, because, there is no registration method and
it would mean restarting daemons frequently.

2.6 GRIA

Institution: IT Innovation Centre, Southampton, UK
National Technical University of Athens

Key persons: Mike Surridge, Hugo Kohmann
Web page: http://www.gria.org/
References: [16]

GRIA provides a package of four Web Services that together enable a
service provider to provide access to shared remote computation and data
storage, subject to a well-defined business process. The four GRIA Services
are:

• an Account Service

• a Resource Allocation Service

• a Data Storage Service

• a Job Execution Service

In fact, as explaned in [16], the GRIA team doesn’t integrate its own
monitoring tool, but uses external benchmarks to compute the resource
usage by the different jobs.

28

3 Comparison

MDS Mercury NWS OCM-G Ganglia
(Globus) (GridLab) (Crossgrid)

General

Supported Systems

AIX, Darwin,
Debian, Fedora

Core, HP/UX, Red
Hat, Solaris, SuSE

Darwin, Irix,
Linux, Mach, OSF,

Solaris, Tru64
Unix systems Linux (RedHat)

AIX, Cygwin,
Darwin, FreeBSD,

HP/UX, Irix,
Linux, OSF, Solaris

Source code C, open source
Tool architecture

distributed
√ √

-3
√ √4

hierarchical
√ √

-
√ √

Code structure modular functionnal
Resource oriented partially

√ √

-
√

Job oriented - possible - - possible
Application oriented -

√

-
√

-

Resource monitoring
Number of metrics

AIX 15-20 145 11 - 38
Linux 15-20 58 13 - 38

Architecture
√ √

- -
√

CPU
√ √ √ √ √

Memory
√ √ √

-
√

Storage
√ √

- -
√

Network
√ √ √

-
√

Application monitoring

Instrumentation6 - C - C, C++,
FORTRAN

-

29

MDS Mercury NWS OCM-G Ganglia

Integration and Development information

Data format XML (MDS-3) Non standard Non standard Non standard
(OMIS)

XML / XDR

Protocols LDAP / OGSA channels over TCP channels over TCP - TCP / UDP
Metrics features

Parameters -
√ √ √

-
Return types - scalar, complex scalar scalar scalar
Notifications

√ √

-
√

-

Method to add
metrics

C or Java modules,
Command line

scripts

C module - - Command line

Security
Authentification LDAP / OGSA IP, GSS-API LDAP GSS-API IP

Authorization VO level7 Metric level8 VO level7 VO level7 domain level9

Encryption
√

- -
√

-

3In NWS, the name server (also called directory service) is centralized. It can be replicated but not distributed, so we may have to choose between
reliability and low load for a grid with many hosts

4Ganglia is fully distributed and even the data publication is distributed, thanks to an exchange of information between hosts. Thus the system
is more failure tolerant

5On AIX systems, Mercury only provides UNIX general metrics, like average load, users online, mounted systems but no precise monitoring
information; using Mercury on AIX would imply the development of a new module

6List of supported languages for application instrumentation: these are the lanhguages in which trace calls for application monitoring can be
made.

7Inside a Virtual Organization (VO), every metric is visible without any restriction
8It is possible to define access rules for each metric
9The only restriction is to see the machine you are asking data and to have your IP allowed

30

4 Related work

In the litterature, there are several other works aimaing at describing the
different grid solutions currently available. Some of them have been used to
write this paper.

The APART community is a group regularly publishing a white paper
called “Performance Tools for the Grid: State of the Art and Future” [10].
It gives a general overview of several monitoring and evaluation tools de-
velopped for the grid. The goal is to make a brief description of each and
to categorize and compare them according to their functionnalities , fea-
tures, instrumentation supports, architectures and provided interfaces. In
the future, this paper will contain feedback about practical experiences of
deploying and using the tools.

A similar work has been made in [23], describing monitoring tools and
sorting them into categories, depending on the main kind of resources mon-
itored, on the way it is organized and distibuted (level 0 tools are made of
sensors directly answering with client, whereas level 3 monitoring systems
allow a hierarchy of information republishers of different kinds, from the
producer to the consumer).

5 Conclusion

Current monitoring systems do not fit our requirements in terms of job-
oriented monitoring, because they need to cooperate with other grid mid-
dleware applications to achieve this goal, but some of them provide enough
fine-grain metrics and are extensible enough to allow us to add job monitor-
ing features.

We have particularly studied the Gridlab monitoring tool Mercury and
Ganglia. Both of them seem to be extensible enough to provide job-oriented
features. Mercury is more powerful but also more complex, whereas Gagnlia
is more simple but could not be a good choice for dynamic grids.

The work we have done was essentially to try and find the extension
possibilities of these tools. The next step should be to integrate them in
a complete grid environnement and make them communicate with the Job
Submitter, the Broker and the Job Manager.

31

A Installing Mercury

Where to find the sources

The main website for Mercury is

http://www.gridlab.org/WorkPackages/wp-11/

The source of the last version (2.4.1) can be downloaded at

gridlab.org/WorkPackages/wp-11/mercury-monitor-2.4.1.tar.gz

The Monitor Reference Manual is available in HTML at

www.gridlab.org/WorkPackages/wp-11/monitor-manual/index.html

Dependencies

Software Version10 Comment

pkg-config 0.15.0
GLib 2 2.2.0

gcc 3.3
in case of building problems

GNU make 3.79.1

GNU autoconf 2.59
if you intend to modify

Mercury or if you build it
from CVS

GNU automake 3.79.1
GNU libtool 1.5
flex 2.5.30
bison 1.875

Installation

Once all the requirements are met, you just have to do the usual following
commands:

% cd [Mercury source directory]

% ./configure

% make

% make install

You can give many different options to the configure script. To know
all of them, you can see the autoconf and libtool documentation for informa-
tion about the standard options, or the Monitor Reference Manual, in the
Building and Installing the Mercury Grid Monitoring System for Mercury
specific options. In the following table, some options are described:

10The versions given in the table are the recommanded ones, given by Gridlab, and
previous version may work; to get more information about the versions, have a look at
the Monitor Reference Manual, in the Software Requirements section

32

--prefix = PATH
Installs Mercury in PATH /bin,
PATH/include...

--with-gridlab
Use this option if building the package in
a GridLab environment.

--with-gssapi=FLAVOR
Enable the use of GSSAPI for authentica-
tion. Supported flavors are heimdal, mit
and gsi. Default is to autodetect

Configuration

lm.conf / mm.conf / libmonp.conf

These files contain the configuration information for the Local Monitor (lm),
the Main Monitor (mm) and the consumer library (libmonp). The structure
of the three files is the same. The detailed section of the manual dedicated
to these files is called Monitoring System Configuration.

The Common section can contain two values: ModulePath which indicates
the path where to look for loadable modules and Autoload which can enable
the loading of every module in the ModulePath directory.

Next, each module can be configured in a Module[‘‘modulename.so’’]

section. If the value Load is set to Yes, the module is loaded. The Priority
of a module let the administrator decide which module will answer when sev-
eral modules have registered the same metrics. The module can be loaded
into a stand-alone process with the External option and in this case, the
User one specifies the user account to run the external sensor as.

Finally, a Daemon section indicates where to store the pid of the daemon
(PidFile), what is the log behaviour, the URL to listen on for request
(Listen) and the Access Control Lists file (AclFile).

Access Control List files

The ACL files contain a list of lines respecting the pattern permission

object to requirements and here is an example of such access control
lists:

allow monitor * to everyone;

deny control * to everyone;

allow monitor app.events to user "admin";

33

The cluster hosts file

In a cluster environment the main monitor needs a list of URLs of local
monitors in cluster hosts filled by the system administrator. The format
of the lines is <hostname> <URL of the local monitor on that host> and
here is an example of such a file.

frontend-node.cluster monp://localhost:3571

node1.cluster monp://node1.cluster

node2.cluster monp://node2.cluster

B Adding a new sensor module in Mercury

Here are the steps to follow to add a new sensor module. Adding an actuator
module is quite similar, but the files to modify are slightly different.

Bootstrap

First thing to do is to compile the tool, to make sure everything is working,
and to bootstrap the Makefiles structure (see fig. 9).

% cd [Mercury main directory]

% ./configure --prefix=/usr/local

% make

Figure 9: Bootstraping

Writing the module

The sensor modules are grouped in the lib/modules subdirectory. The ap-
plication actuator module can be found in lib/modules/appsensor. To
write your own module, you can start from another file, like tru64.c (or
actuator.c).

We are now presenting a new module called newmod.c (the complete
source is in the appendices), and describing the key sections in the concep-
tion of the module.

Declarations of the metrics

The metrics are defined by their class and their id; host.cpu.frequency,
for example, belongs to the cpu class and is identified by ID_cpu_frequency.

34

To define which metrics your module is going to provide, you have
to declare them twice, in the Prototypes section and in the Global vari-
ables section of the .c file. In the following figures (10 and 11), we are
redefining an existing metric (host.cpu.number) and creating a new one
(host.newclass.newid) in our new module .

// Prototypes

[...]

static DEF_SAMPLE(cpu, number);

static DEF_SAMPLE(newclass, newid);

Figure 10: lib/modules/newmod.c: part of the Protoypes declaration section

// Global variables

static const prod_metric_desc newmod_metric_table[] = {

{ "host.cpu.number", SAMPLE(cpu, number) },

{ "host.newclass.newid", SAMPLE(newclass, newid) },

{ NULL, NULL }};

[...]

Figure 11: lib/modules/newmod.c: part of the Global variables declaration
section

Definitions of the metrics

Let’s now define the metrics we have chosen to furnish. In the figures 12 we
can see that host.cpu.number always returns 0 (in fact this won’t necessary
be the result we will have when asking the Local Monitor, because the result
is given by the top-priority loaded module providing this metric) and that
host.newclass.newid return a char string.

Module interface

To complete the module, we finally need to declare the public interface of
the module. In the source code, it corresponds to the prod_sensor_module

structure called newmod_module. The module is registered by this structure
through a macro call PROD_SENSOR_MODULE.

35

static DEF_SAMPLE(newclass, newid) {

char* ret = "Yeah ! New module added succesfully";

return SEND(string, ret);

}

static DEF_SAMPLE(cpu, number) {

unsigned long ret = 0;

return SEND(uint32, ret);

}

Figure 12: lib/modules/newmod.c: Metrics definitions

The structure declares 4 functions to be defined in the source file:

• module_init

• module_done

• check_metric to check the name and parameters of the metrics asked
for

• start_instance to prepare an instance of a metric

We have now written our new module, and with the newmod.c file, it is
easy to understand the basic structure of a module. If you want to have a
more complex module and you need to include net support in your module
for example, you will have to look at other modules like net-common.cwhich
is included in unix.c.

Registration of the new metrics

This step only concerns non-overloaded metrics. In the example developped
here, host.newclass.newid. In the déclaration section, we have declared
this new metric as the couple {newclass, newid}. To register the metric,
we need to modify two files.

First we have to define the class and id enum constants CLASS_newclass
and ID_newclass_newid which are used by the macros DEF_SAMPLE and
SAMPLE. This is done in lib/modules/hostsensor.h (see fig. 13), but the
only constraints for the constants are to exist and to have different values11,
wherever they are defined.

11In fact different classes must have different CLASS xxx values and different metrics
of the same class must have different ID class xxx values

36

/* Measurement classes */

enum { CLASS_cpu = 1,

CLASS_disk,

[...]

CLASS_newclass};

/* newmod measurement IDs */

enum { ID_newclass_newid};

Figure 13: lib/modules/hostsensor.h: Metric class and id registration

Next we have to define the type and parameters of this new metric in
etc/metric_defs (for actuators, the file is etc/ctrl_defs. Figure 14 shows
this step.

newmod

name = host.newclass.newid

param = string host

type = string value;

Figure 14: etc/metric defs: Metric class and id registration

Registration of the new module

Finally, we have to modify lib/modules/Makefile.am and configure.ac.
The first modification (fig. 15) is to tell make how to compile newmod.c.
The second one (fig. 16) is to tell configure to include the module if the
condition (here true) is met.

EXTRA_LTLIBRARIES = \

auth-anon.la \

[...]

unix.la \

newmod.la

[...]

newmod_la_SOURCES = newmod.c

newmod_la_CPPFLAGS = $(MOD_NEWMOD_CPPFLAGS)

newmod_la_LDFLAGS = $(MODULE_LDFLAGS) $(MOD_NEWMOD_LDFLAGS)

Figure 15: lib/modules/Makefile.am: module compilation declarations

37

MON_CHECK_MODULE([newmod], [test module by OL], [true])

Figure 16: configure.ac: module compilation declarations

Installation and configuration

We are now ready to install the modified version of Mercury. The recompi-
lation (make) will normally call autoconf and automake to regenerate the
Makefiles. Type make install to finally put the compiled program where
it is supposed to be.

Before launching the Local Monitor (or the Main Monitor), we still have
to change the configuration file (etc/lm.conf or etc/mm.conf, see fig. 17)
to tell the monitor to load our module.

Then, depending on the priorities, host.cpu.number will be taken in
charge by a pre-existing module or by ours; and host.newclass.newid will
return the string “Yeah ! New module added succesfully”

Module added by OL

Module["newmod.so"] {

Load yes;

Priority 100;

}

Figure 17: etc/lm.conf: Configuration for module loading and priorities

C Installing Ganglia

Where to find the sources

The main website for Ganglia is

http://ganglia.info/

The source of Ganglia monitor core laste release (3.0.1) can be found at

http://ganglia.info/downloads.php

Ganglia documentation can be found at

http://ganglia.info/docs/

38

Dependencies

Software Comment

librrd if you want to compile gmetad12

gcc
in case of building problems

GNU make

GNU autoconf if you intend to modify
Mercury or if you build it

from CVS
GNU automake

GNU libtool

Installation

Once all the requirements are met, you just have to do the usual following
commands:

% cd [Ganglia source directory]

% ./configure

% make

% make install

You can give many different options to the configure script. To know all
of them, you can see the autoconf and libtool documentation for information
about the standard options, or the Ganglia Readme. In the following table,
some options are described:

--prefix = PATH
Installs Ganglia in PATH/bin,
PATH /include...

--with-gmetad
Compile also the gmetad daemon.
By default, only gmond is built

--disable-shared On AIX, Ganglia should not be
compiled with shared libraries--enable-static

CFLAGS="-I/rrd/header/path" You might need to give the librrd

path to the configure script when
compiling gmetad

CFLAGS="-I/rrd/header/path"

LDFLAGS="-L/rrd/library/path"

Configuration

• gmond.conf

It is the configuration file describing the behaviour of gmond.

12As the librrd is statically linked, there is no need to have the library once gmetad is
compiled

39

First, a (unique) cluster section will describe the cluster which the host
belongs to with the following attributes:

name13 Name of the cluster

owner13 Administrators of the cluster

latlong GPS coordinates of this cluster on earth

url The url for more information on the cluster

Then, the globals section controls general characteristics of gmond. Here
are the values this section contains:

daemonize When true, gmond will daemonize

setuid When true, gmond sets its effective uid
to the uid of the user specifieduser

debug level Commands the verbosity of gmond

mute When true, gmond will not send any
data

deaf When true, gmond will not receive any
data

host dmax If host dmax is a positive number,
gmond will flush a host after it has not
heard from it for host dmax seconds

cleanup threshold Minimum about of time before gmond

will cleanup and hosts or metrics where
tn > dmax, i.e. expired data

gexec Specify whether gmond will announce
the host availability to run gexec14jobs.

You can define as many udp send channel sections as you like within
the limitations of memory and file descriptors. If gmond is configured as
mute this section will be ignored. The options are the following:

mcast join When specified gmond will send data out the interface
mcast if on the UDP multicast socket mcast joinmcast if

host If no mcast is specified, gmond will send unicast UDP
messages to the host specifiedport

You can specify as many udp recv channel and tcp accept channel

sections as you like within the limits of memory and file descriptors. If
gmond is configured as deaf these sections will be ignored. The options for
udp recv channel are mcast join, bind, port, mcast if and family; the
options for tcp accept channel are bind, port, interface, family and
timeout; these options specify the characteristics of the UDP or TCP chan-
nel to listen to; both can have an acl subsection.

13The pair name / owner should be unique in the world.
14gexec is part of an execution environment which is another part of the Ganglia project.

40

Here are some examples of acl subsections:

acl {

default = "deny"

access {

ip = 192.168.0.4

mask = 32

action = "allow"

}

}

acl {

default = "allow"

access {

ip = 192.168.0.0

mask = 24

action = "deny"

}

access {

ip = ::ff:1.2.3.0

mask = 120

action = "deny"

}

}

Finally, gmond.conf contains as many collection group sections as you
like within the limitations of memory. A collection group has the follow-
ing attributes:

collect once Specify the frequency the metrics will be
collected atcollect every

time threshold Max time before publiqhing again the metrics of
the group

metric Each collection group shall contain one or more
metric subsections, which will be characterized
by the name of the metric and by an optional
value threshold defining the percentage of the
minimum variation triggering an update.

Here are some examples of collection group subsections:

collection_group {

collect_once = yes

time_threshold = 1800

metric {

name = "cpu_num"

}

}

collection_group {

collect_every = 60

time_threshold = 300

metric {

name = "cpu_user"

value_threshold = 5.0

}

metric {

name = "cpu_idle"

value_threshold = 10.0

}

}

41

• gmetad.conf

For gmetad to do anything useful you much specify at least one data source

in the configuration. The format of the data source line is as follows:

data_source "Cluster A" 127.0.0.1 1.2.3.4:8655

data_source "Cluster B" 1.2.4.4:8655

For each cluster gmetad has to collect data from, we have to add a line with
the name of the cluster (corresponding to the name value in the cluster

section of gmond.conf), and a list of the addresses of the nodes in the
cluster able to publish the cluster state.

There are some other options available in gmetad.conf, which are de-
scribed inside the configuration file itself.

D A simple job monitor with Ganglia

So as to give an example of the possibility in Ganglia to publish job-oriented
metrics, we have developped little scripts and tools to submit locally a job
and create associated metrics.

The job submitter
Usage: submitjob <GJID> <local_user> <prog> <in> <out>

To submit a job, you have to give the Grid Job ID, because it will be the
prefix of all the metrics associated to this job. You also have to give the local
user which will be used to launch the program; in a real implementation,
the user should be chosen by the job submitter in a pool of available local
users.

Then you give the submitter the names of the program file and of the
files used as standard inputs and outputs. The transfert of these files should
be done by the Data Management Service in a complete grid environment.

The submitjob first launches the program with the standard input and
output redirected, under the requested account local_user; then it period-
ically runs a script collecting and publishing data.

Data collection and publication

The metrics added are the number of processes run by the job and the CPU
load used by the job. They are published through the following script:

42

#!/bin/sh

metricsUser localuser metricprefix

[...] # computation of the CPUload using ps aux

gmetric -n $2_CPUload -v $calcul -t double -u "%"

gmetric -n $2_NbProcess -v ‘ps aux|grep "^$1" | wc‘ -t int16

The script has two arguments, the local user running the job, and the
metrics prefix that will be used. Then it computes the CPUload filtering
the output of ps aux. Finally, it publishes both metrics using gmetric.

Data visualization

Finally, it is possible to see these metrics on Ganglia PHP website. Fig. 18
shows an example of such a job running on a machine called pcmas.

Figure 18: Job monitoring with Ganglia and the Simple Job

43

References

[1] Zoltán Balaton and Gabor Gombás. Resource and job monitoring in
the grid. In Euro-Par, pages 404–411, 2003.

[2] Zoltán Balaton, Péter Kacsuk, Norbert Podhorszki, and Ferenc Vajda.
From cluster monitoring to grid monitoring based on grm. In Euro-Par,
pages 874–881, 2001.

[3] Zoltán Balaton and Fernc Vajda. Grid information and monitoring
systems, 2004.

[4] Bartosz Balis, Marian Bubak, Wlodzimierz Funika, Roland Wismüller,
Marcin Radecki, Tomasz Szepieniec, Tomasz Arodz, and Marcin Kur-
dziel. Performance evaluation and monitoring of interactive grid ap-
plications. In Lecture Notes in Computer Science, Volume 3241, pages
345–352, Nov 2004.

[5] Marian Bubak, Wlodzimierz Funika, and Roland Wismüller. The cross-
grid performance analysis tool for interactive grid applications. In
PVM/MPI, pages 50–60, 2002.

[6] CERN. Gridcafé website.

[7] Julita Corbalán and Jesús Labarta. Dynamic speedup calculation
through self-analysis, 1999.

[8] Julita Corbalán, Xavier Martorell, and Jesús Labarta. Performance-
driven processor allocation, 2000.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid infor-
mation services for distributed resource sharing, 2001.

[10] M. et al. Gerndt. Performance tools for the grid: State of the art and
future. apart white paper, 2004.

[11] J. Hodges and R. Morgan. Rfc 3377: Lightweight directory access
protocol (v3): Technical specification, 2002.

[12] Helene N. Lim Choi Keung, Justin R. D. Dyson, Stephen A. Jarvis, and
Graham R. Nudd. Predicting the performance of globus monitoring and
discovery service (mds-2) queries. In GRID, pages 176–183, 2003.

[13] John Linn. Rfc 1508: Generic security service application program
interface, 1993.

[14] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-
line Monitoring Interface Specification (Version 2.0). Technical Re-
port TUM-I9733, SFB-Bericht Nr. 342/22/97 A, Technische Universität
München, Munich, Germany, July 1997.

44

[15] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia
distributed monitoring system: design, implementation, and experi-
ence. Parallel Computing, 30(5-6):817–840, 2004.

[16] Athanasios Panagakis, Costis Christogiannis, and Theodora Var-
varigou. End-to-end performance modelling in gria, 2003.

[17] Norbert Podhorszki, Zoltán Balaton, and Gabor Gombás. Monitoring
message-passing parallel applications in the grid with grm and mercury
monitor. In European Across Grids Conference, pages 179–181, 2004.

[18] Norbert Podhorszki and Peter Kacsuk. Design and implementation of
a distributed monitor for semi-on-line monitoring of visualmp applica-
tions. Distributed and parallel systems: from instruction parallelism to
cluster computing, pages 23–36, 2000.

[19] GridLab project. Mercury monitor reference manual, Version 2.4.0.

[20] Sun Microsystems R. Srinivansan. Rfc 1832: Xdr: External data rep-
resentation standard, 1995.

[21] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and
M. Swany. A grid monitoring architecture, 2002.

[22] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather ser-
vice: a distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems, 15(5–6):757–768,
1999.

[23] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid moni-
toring systems., 2004.

45

