
The NANOS Resource Manager in the eNANOS Project

Ivan Rodero, Julita Corbalan

Computer Architecture Department

Technical University of Catalonia (UPC)

Jordi Girona 1-3, Modul D6, 08034 Barcelona, Spain

{irodero, juli}@ac.upc.edu

Abstract

In this paper we present the NANOS Resource Manager that we have used
within the eNANOS project. In particular, we describe its main functionalities and
how we have integrated it into the eNANOS architecture. We also describe the
extended functionalities of the NANOS Resource Manager that perform dynamic
processor allocation in coordination with the eNANOS jobs scheduler. The target
of our coordinated scheduling strategy is to manage multilevel parallel applications
on clusters of SMPs architectures efficiently.

1 Introduction

Traditional operating systems provide a reduced set of functionalities to manage the
processor allocation to applications. These mechanisms are usually hidden tothe user
domain: to the regular applications and other components of the systems that are
not executed in system mode such as the queuing systems. Although the numerous
efforts devoted to the research on the area of cluster scheduling, thereis a lack in the
mechanisms for the efficient processor allocation still such as the dynamic allocation of
threads to the processors.

To perform these tasks, theNANOS Resource Manager (NANOS-RM) has been
developed on top of traditional systems providing this extended functionality without
modifying the native systems [1]. As a local processor scheduler, the NANOS-RM
main goal is to efficiently distribute a set of processors between the applications under
its control. It provides an API to coordinate with the different components of the
system: parallel applications, queuing system, monitoring system, and performance

1

2 I. Rodero, J. Corbalan

analysis system. It also includes a set of predefined processor scheduling policies that
are based on space-sharing approaches to distribute the processors. The responsibility
of the processor distribution is shared by the NANOS-RM and the applications.

In this paper we focus on the cluster and processor scheduling strategies that we
have at the two bottom levels of our architecture. As is described in [6], theeNANOS
Scheduler implements the cluster scheduling based on co-allocation policies, and the
NANOS-RM performs the processor scheduling for SMP nodes.

Figure 1 shows the eNANOS architecture focusing on the components at its lower
scheduling layer. It also shows some details and the APIs concerning the coordination
between the applications, processor scheduler, and cluster scheduler. The NANOS-
RM obtains the applications performance directly, and it provides the performance
information of a node to the eNANOS Scheduler that collects the performance
information of each node. This mechanism helps the cluster scheduler to improve its
cluster scheduling strategies.

Figure 1: Low level support detail of the eNANOS architecture

The NANOS Resource Manager in the eNANOS Project 3

In eNANOS, the scheduling decisions are communicated to the other components
in the system and are taken based on direct information. That is why we provide a
well defined set of APIs between the levels to both facilitate the scheduling decisions
(for instance specific allocations) and get detailed information in run time (forinstance
the real performance reached by a job). As can be seen in the highlightedwindow
of figure 1 we provide some APIs to coordinate various components inside a node:
the parallel applications, the performance analysis tools, its own monitoring system,
and some runtime libraries that provides several functionalities such as parallelism
management. Moreover, we provide other APIs to coordinate different NANOS-RMs
with the eNANOS Scheduler. They provide static resource information suchas the
number of CPUs, and dynamic information such as the maximum number of jobs that
a node can run simultaneously without degrading the applications performance (also
known as multi-programming level).

In the rest of this paper we present the architeture of the NANOS-RM andthe details
of the different NANOS-RM’s functionalities.

2 Overall Architecture

The main responsibilities of the NANOS-RM are: collecting the applications
requirements, applying the scheduling policy and sending the processor distribution to
the applications. We assume that the parallel applications are executed in the context
of a runtime (OpenMP, MPI) that provides the required functionality to manage their
parallelism. The implementation is done by modifying the run time including, in the
appropriate places, calls to the NANOS-RM API to adjust the processor allocation
according to the NANOS-RM decisions. Moreover, it requires a reduced set of
functionalities from the native system that make it portable among different operating
systems. The most important ones are:

• A shared memory mechanism that is usually provided by the majority of unix-
based operating systems.

• A binding mechanism between processes and processors. In generalit is provided
by AIX, IRIX, Linux as well as other operating systems.

Although the current implementation is done on top of AIX, it can be easily ported to
other operating systems such as Linux however, the efficiency of the NANOS-RM will
depend on the level of control provided by the native operating system.

Internally, the NANOS-RM is implemented with several components as is shown in
figure 2: main execution thread, scheduler thread, application support API, job scheduler
support API and monitoring support API. The main thread initializes the data structures

4 I. Rodero, J. Corbalan

Figure 2: NANOS-RM overall architecture

based on the configuration and creates the rest of the working threads.It works in
an iterative way (asynchronously) and performs the following basic tasks: processor
scheduling, system load control, and dynamic detection of multilevel applications.
The processor scheduling is performed by the scheduler thread which periodically
wakes up, collects the available information regarding the applications request and
performance, applies the scheduling policy and informs the applications. The other
components implement communication with applications, with the job scheduler and
with the monitoring tool. The initialization and configuration is done by the command-
line interface.

3 Processor allocation policies

The scheduling policies supported by the NANOS-RM are based on dynamicCPU
allocation and they are composed of two phases. Since these scheduling policies are
oriented to MPI+OpenMP applications they are multilevel. They also support one
level of parallelism (regular MPI or OpenMP). The first scheduling phase is performed
between the applications and implements a FIFO policy: one application has N MPI
processes and requires a minimum of N processors. The second phaseis performed
between the processes and implements two possible policies: Equipartition (EQUIP)

The NANOS Resource Manager in the eNANOS Project 5

[4] and Dynamic Processor Balancing (DPB) [2]. Equipartition starts the application
execution allocating the required number of CPUs and distributes them equallyamong
the application processes. Dynamic Processor Balancing tries to balance the load
between the MPI processes of an application.

4 Job model

Figure 3 shows the job model used by the NANOS-RM scheduler. A job is composed
of a set of processes, and one of them is marked as the master. However, when the job
information is collected by the eNANOS job scheduler [6] from different NANOS-RMs
we use a set of master identifiers because the job can be mapped into different nodes.
Thus, the applications have one master process for each node. Moreover, the NANOS-
RM is in charge of managing other job information such as the total number of requested
CPUs that is computed from the process data. If a job is composed of more than one
process, the job is considered to be an MPI+OpenMP one. Otherwise, it isconsidered to
be a regular OpenMP job.

Figure 3: NANOS-RM job schema

5 Applications

The NANOS-RM supports MPI and MPI+OpenMP applications. The source code of
the applications does not require modification; it just needs to be re-linked with the
libraries provided with the NANOS package. These libraries include functionalities
to connect/disconnect to the NANOS-RM, ask automatically for processors, adapt the
application parallelism to the NANOS-RM allocations and inform about the application
performance.

6 I. Rodero, J. Corbalan

6 Performance monitor

The philosophy of the eNANOS project includes automatic measurement of the
applications performance. Moreover, the performance library that is provided with
the NANOS package automatically measures the load imbalance of the MPI+OpenMP
applications, and the scheduling policies are implemented using this performance
information.

Most scientific applications are iterative which means that they apply the same
algorithm several times to the same data set. In particular, the data is processed
repeatedly until the number of iterations reaches a specific value or until thevalue of
a parameter reaches a particular value (for instance, when the error converges to certain
value). Using this iterative behavior of the applications, the profiling libraryis able to
obtain the accumulated value of the relevant computation and communication periods.

We consider the standard mechanism that MPI defines to instrument the applications.
It consist of providing a new interface that is called before the real MPIinterface [5].
Figure 4 shows how the application is instrumented using the standard MPI profiling
mechanism. When a MPI call is invoked from the application, the library measures the
spent time on the call and adds this value to the total amount of spent time on MPI
calls. The iterative structure of the application is detected using a Dynamic Periodicity
Detector (DPD) library [3]. DPD is invoked from the instrumented MPI call using the
PMPI mechanism. Its input is a value obtained from a composition of the MPI primitive
type (send, receive, etc.), the destination process and the buffer address. With this value
the DPD detects the pattern of the application periodic behavior. When a period is
detected, the profiling library keeps track of the time spent in executing the whole period.
These two values, MPI time and execution time, are averaged with the values obtained
from some periods and are passed to the resource manager to feed the allocation policy.
More details of this mechanism can be found in [2].

Figure 4: NANOS-RM profiling mechanism

The NANOS Resource Manager in the eNANOS Project 7

7 NANOS-PS

The NANOS-PS is a tool included in the NANOS-RM package that allows users or
applications to obtain information about the status of the jobs, as well as some basic
information regarding the NANOS-RM details. The NANOS-PS can be queried through
a command-line client or through an API. The NANOS-RM information includes
detailed information of scheduling decisions such as the allocations between CPUs and
threads/processes. Moreover, it includes the monitoring data of the running applications
following the job model presented previously in figure 3.

8 Application API

From the point of view of the application, we are assuming that the run time libraries
(of OpenMP or MPI) have been modified to include the following methods. However, it
is also possible to invoke these methods directly from the applications through the API
shown in listing 1.

i n t ConnectRM (i n t m a s t e r j o b i d)
void DisconnectRM ()
i n t CPUSCurrent ()
i n t CPUSRequest (i n t cpus)
void NewThread (i n t pid , i n t vp id)
i n t MustRe lease (i n t i d)
i n t ReleaseCPU (i n t vp id)
void WakeUpThreads ()

Listing 1: NANOS-RM application API

ConnectRM connects with the NANOS-RM. It returns 0 if the connection is
established successfully and -1 if there is any error. Themaster jobid is the master
process identifier of the job in the case of MPI+OpenMP applications. Note that to
invoke the rest of the methods it is necessary to establish a connection previously, if
there is no established connection an error is thrown.DisconnectRM disconnects the
application to the NANOS-RM.CPUSCurrent returns the current number of allocated
CPUs by the applications that are running in the node at the moment that the method
is invoked. CPUSRequest requests the indicated number of CPUs (cpus) for the
application. It waits until the next scheduling cycle and returns the number of allocated
CPUs to the application.NewThread informs the NANOS-RM that the application has
obtained a new kernel thread. Thepid is the physical identifier of the new thread andvpid

8 I. Rodero, J. Corbalan

is the logical identifier (which can be from0 to threads number-1). MustRelease returns
1 if the logical identifier of the thread (which is specified byid) is marked to be released.
This situation happens when the NANOS-RM reduces the number of allocatedCPUs of
an application.ReleaseCPU blocks the thread that is specified by its logical identifier
(vpid). In order to invoke this method, an application must execute theMustRelease
method previously to check whether the thread must be released.WakeUpThreads
unblocks all the threads that are marked to be resumed. This situation happens when
the NANOS-RM increases the number of allocated CPUs of an application.

9 Monitoring API

The monitoring API that is one of the mechanisms to provide dynamic data from the
applications that are under the NANOS-RM control. This API provides information
regarding the available resources and the current job status through themethods shown
in listing 2.

i n t ConnectJM2RM (char∗ hostname ,i n t ∗ f d s)
void DisconnectJM2RM (i n t ∗ f d s)
i n t g e t S t a t i c I n f o S y s t e m (i n t ∗ fds , s t r u c t STATIC INFO system ∗ i n f o)
i n t getDynamic In foSystem (i n t ∗ fds , s t r u c t DYN INFO system ∗ i n f o)
i n t getPS (i n t ∗ fds , JM data ∗JM info , i n t d e t a i l)

Listing 2: NANOS-RM job scheduler and monitoring APIs

Connect JM2RM connects the monitoring system to the NANOS-RM,Hostname
indicates the node where the NANOS-RM is running andfds is the connection
handler which is an output parameter. The method returns 0 if the connectionis
established successfully and -1 if there is any error. Note that the connection handler
is required by the rest of the methods, therefore it is necessary to establish a connection
previously.Disconnect JM2RM disconnects the monitoring system to the NANOS-RM.
fds should be the connection handler that was returned by theConnect JM2RM method.
getStaticInfoSystem andgetDynamicInfoSystem collects static and dynamic information
of the system respectively. They return 0 if the method has been executedproperly
and -1 if there is any error.fds is the connection handler that was returned by the
Connect JM2RM method. info must be a valid memory address where to return the
monitoring data.The static monitoring information follows theSTATIC INFO system
data structure and the dynamic information follows theDYN INFO system one. getPS
collects information concerning the running jobs details. It returns 0 if the method has

The NANOS Resource Manager in the eNANOS Project 9

been executed properly and -1 if there is any error. Since it allocates memory with
malloc, it must be freed when it is not used.Detail indicates the detail level of the
data that the NANOS-RM will provide. The valid values fordetail areRESUMED and
DETAILED.

10 Performance API

The performance API of the NANOS-RM is provided jointly with the application API.
It has its own methods to send the information concerning the performance, but the
connection and disconnection functionalities are provided by the applicationAPI. The
performance API adds the two new functions that are described in listing 3.

void S e t P e r c B a l a n c i n g D a t a (double p e r c e n t a g e)
void S e t I t e r T i m e D a t a (double t ime)

Listing 3: NANOS-RM performance API

SetPercBalancingData provides the percentage of time that the application has been
run inside MPI functions.SetIterTimeData returns the spent time per iteration of the
application’s most external loop. We assume that applications are iterative.

11 Summary

In this paper we have presented the NANOS Resource Manager, we have described
its main functionalities and how it has been integrated into the eNANOS project. Our
main lines of future work are focused on improving the coordination with the eNANOS
Scheduler [6] in order to enhance the scheduling strategies in clusters composed of SMP
architectures.

Acknowedgements

This paper has been supported by the Spanish Ministry of Science and Education under
contract TIN200760625C0201.

10 I. Rodero, J. Corbalan

References

[1] J. Corbalan, Coordinated Scheduling and Dynamic Performance Analysis in
Multiprocessor Systems, Ph.D. thesis, Computer Architecture Department,
Technical University of Catalonia (UPC), Spain (July 2002).

[2] J. Corbalan, A. Duran, J. Labarta, Dynamic Load Balancing of MPI+OpenMP
Applications, in: International Conference on Parallel Processing (ICPP), Montreal,
Canada, 2004, pp. 195–202.

[3] F. Freitag, J. Corbalan, J. Labarta, A Dynamic Periodicity Detector: Application to
Speedup Computation, in: IEEE International Parallel and Distributed Processing
Symposium (IPDPS), San Francisco, CA, USA, 2001.

[4] C. McCan, R. Vaswani, J. Zahorian, A Dynamic Processor AllocationPolicy
for Multiprogrammed Shared-Memory Multiprocessors, ACM Transactionson
Computer Systems 11 (2) (1993) 146–178.

[5] The MPI Message-passing Interface Standard Web Site.
http://www.mpi-forum.org

[6] I. Rodero, J. Corbalan, Design and Implementation of the eNANOS Scheduler,
UPC-DAC-RR-CAP-2008-20, Tech. rep., Computer Architecture Department,
Technical University of Catalonia (2008).

