The NANOS Resource Manager in the eNANOS Project

Ivan Rodero, Julita Corbalan

Computer Architecture Department
Technical University of Catalonia (UPC)
Jordi Girona 1-3, Modul D6, 08034 Barcelona, Spain
{irodero, juli}@c.upc.edu

Abstract

In this paper we present the NANOS Resource Manager that we tsed
within the eNANOS project. In particular, we describe itsimfanctionalities and
how we have integrated it into the eNANOS architecture. V¢® aescribe the
extended functionalities of the NANOS Resource Managerpghegorm dynamic
processor allocation in coordination with the eNANOS joblsesiuler. The target
of our coordinated scheduling strategy is to manage mudtilgarallel applications
on clusters of SMPs architectures efficiently.

1 Introduction

Traditional operating systems provide a reduced set of functionalities t@ageathe
processor allocation to applications. These mechanisms are usually hidihenuser
domain: to the regular applications and other components of the systems ¢hat ar
not executed in system mode such as the queuing systems. Although theonsmer
efforts devoted to the research on the area of cluster scheduling,isheedack in the
mechanisms for the efficient processor allocation still such as the dynantatabio of
threads to the processors.

To perform these tasks, tHeANOS Resource Manager (NANOS-RM) has been
developed on top of traditional systems providing this extended functionaiibowut
modifying the native systems [1]. As a local processor scheduler, thdQ8RM
main goal is to efficiently distribute a set of processors between the applisatiaer
its control. It provides an API to coordinate with the different componeftthe
system: parallel applications, queuing system, monitoring system, and rmparfoe

2 I. Rodero, J. Corbalan

analysis system. It also includes a set of predefined processorusicigegolicies that
are based on space-sharing approaches to distribute the procédsenesponsibility
of the processor distribution is shared by the NANOS-RM and the applisation

In this paper we focus on the cluster and processor scheduling steatbhgtewe
have at the two bottom levels of our architecture. As is described in [6NB&OS
Scheduler implements the cluster scheduling based on co-allocation policies, and the
NANOS-RM performs the processor scheduling for SMP nodes.

Figure 1 shows the eNANOS architecture focusing on the components at és low
scheduling layer. It also shows some details and the APIs concerningahdircation
between the applications, processor scheduler, and cluster schedhlerNANOS-

RM obtains the applications performance directly, and it provides the rpeaftce
information of a node to the eNANOS Scheduler that collects the performance
information of each node. This mechanism helps the cluster scheduler tovimigso
cluster scheduling strategies.

Interoperable

Grid Interoperability Grid System

<——| other domains /VO’s

I Grid Domain / VO,

,,, !
_________________ i
Cluster Scheduling) : I
2;2‘,‘\: 1 LoadLeveIer 1
: : n S (to eNANOS Scheduler...) socket connection
““““ : cpus_node : 7L
i node_load : (...)
{ max jobs NANOS-RM <—"—
eNANOS Scheduler | i hostname :
i running_appls | Jpmmmmmmennsseeeaes N
Node 4 RS / { Application APl

i Monitoring API H
Performance : PS Interface i
Monitor \ i Performance API J

NANOS-RM «— Job Monitor [) R Nt
Parallel / named pipe connection
Runtime Library

|
| \
| I
| I
| I
| I
[] . 1 |
|
; Crizov] | = ,
|])i |
. 832 888 G e $ ‘ :
. - C [p - |
Parallel Applications — | } Parallel Applications H
| | |

(MPI+OpenMP) Tracefiles (MPI+OpenMP) Tracefiles

! Processor Scheduling

__

Figure 1: Low level support detail of the eNANOS architecture

The NANOS Resource Manager in the eNANOS Project 3

In eNANOS, the scheduling decisions are communicated to the other contponen
in the system and are taken based on direct information. That is why w&era
well defined set of APIs between the levels to both facilitate the schedulicigioies
(for instance specific allocations) and get detailed information in run timarn(§ance
the real performance reached by a job). As can be seen in the highligitedw
of figure 1 we provide some APIs to coordinate various components insidele n
the parallel applications, the performance analysis tools, its own monitorstgmsy
and some runtime libraries that provides several functionalities such aliepam
management. Moreover, we provide other APIs to coordinate differaiN®&-RMs
with the eNANOS Scheduler. They provide static resource information aactne
number of CPUs, and dynamic information such as the maximum number of jdbs tha
a node can run simultaneously without degrading the applications perfoenfalso
known as multi-programming level).

In the rest of this paper we present the architeture of the NANOS-RMhendetails
of the different NANOS-RM’s functionalities.

2 Overall Architecture

The main responsibilities of the NANOS-RM are: collecting the applications
requirements, applying the scheduling policy and sending the processinudion to

the applications. We assume that the parallel applications are executed ionte&tc

of a runtime (OpenMP, MPI) that provides the required functionality to mariagir
parallelism. The implementation is done by modifying the run time including, in the
appropriate places, calls to the NANOS-RM API to adjust the processarasitho
according to the NANOS-RM decisions. Moreover, it requires a redlusst of
functionalities from the native system that make it portable among diffegertating
systems. The most important ones are:

e A shared memory mechanism that is usually provided by the majority of unix-
based operating systems.

e A binding mechanism between processes and processors. In gerspabvided
by AIX, IRIX, Linux as well as other operating systems.

Although the current implementation is done on top of AlX, it can be easily gdde
other operating systems such as Linux however, the efficiency of theOB\RM will
depend on the level of control provided by the native operating system.

Internally, the NANOS-RM is implemented with several components as is shown in
figure 2: main execution thread, scheduler thread, application supPaéro® scheduler
support APl and monitoring support API. The main thread initializes the datetsres

4 I. Rodero, J. Corbalan

Perforr!'nance eNANOS Scheduler
Monitor

socket

Application

/
| \
‘ g?? . NANOS-RM
[Scheduler Applications Comm.SC Main
receive/send
<<update>> 9
,,,,,,,,,,,,, Configuration
AN ‘ E A A
Shared <<initialize>> <<create>>
Memory o =
— Policies H/
L J
ZS

<<create>>

Figure 2: NANOS-RM overall architecture

based on the configuration and creates the rest of the working thréa#grks in

an iterative way (asynchronously) and performs the following basicstapkocessor
scheduling, system load control, and dynamic detection of multilevel applisation
The processor scheduling is performed by the scheduler thread whidbdigally
wakes up, collects the available information regarding the applications seqne
performance, applies the scheduling policy and informs the applications. offter
components implement communication with applications, with the job scheduler and
with the monitoring tool. The initialization and configuration is done by the command-
line interface.

3 Processor allocation policies

The scheduling policies supported by the NANOS-RM are based on dynamiic
allocation and they are composed of two phases. Since these scheddioigspare
oriented to MPI+OpenMP applications they are multilevel. They also suppm@t o
level of parallelism (regular MPI or OpenMP). The first schedulingsehia performed
between the applications and implements a FIFO policy: one application has N MPI
processes and requires a minimum of N processors. The secondiphmséormed
between the processes and implements two possible policies: EquipartitionREQU

The NANOS Resource Manager in the eNANOS Project 5

[4] and Dynamic Processor Balancing (DPB) [2]. Equipartition starts pgmication
execution allocating the required number of CPUs and distributes them equadiyg
the application processes. Dynamic Processor Balancing tries to balandeath
between the MPI processes of an application.

4 Job mode€

Figure 3 shows the job model used by the NANOS-RM scheduler. A job is cseap
of a set of processes, and one of them is marked as the master. Howlegarthe job

information is collected by the eNANOS job scheduler [6] from differentNN@S-RMs

we use a set of master identifiers because the job can be mapped intontliffedes.

Thus, the applications have one master process for each node. Mpri@/NANOS-

RM is in charge of managing other job information such as the total numbeqoéséed

CPUs that is computed from the process data. If a job is composed of morerba
process, the job is considered to be an MPI+OpenMP one. Otherwisepitsiered to
be a regular OpenMP job.

“master

Figure 3: NANOS-RM job schema

5 Applications

The NANOS-RM supports MPI and MPI+OpenMP applications. The souooxle of
the applications does not require modification; it just needs to be re-linktdtine
libraries provided with the NANOS package. These libraries include furedfites
to connect/disconnect to the NANOS-RM, ask automatically for procesadept the
application parallelism to the NANOS-RM allocations and inform about the agtjit
performance.

6 I. Rodero, J. Corbalan

6 Performance monitor

The philosophy of the eNANOS project includes automatic measurement of the
applications performance. Moreover, the performance library thatasiged with

the NANOS package automatically measures the load imbalance of the MPIMBpen
applications, and the scheduling policies are implemented using this perf@manc
information.

Most scientific applications are iterative which means that they apply the same
algorithm several times to the same data set. In particular, the data is pubcesse
repeatedly until the number of iterations reaches a specific value or untiathe of
a parameter reaches a particular value (for instance, when the enk@rges to certain
value). Using this iterative behavior of the applications, the profiling libraugble to
obtain the accumulated value of the relevant computation and communicatioderio

We consider the standard mechanism that MPI defines to instrument the &pp$ica
It consist of providing a new interface that is called before the real Mtetface [5].
Figure 4 shows how the application is instrumented using the standard Mitingro
mechanism. When a MPI call is invoked from the application, the library measee
spent time on the call and adds this value to the total amount of spent time on MPI
calls. The iterative structure of the application is detected using a DynamadiRgy
Detector (DPD) library [3]. DPD is invoked from the instrumented MPI caihg the
PMPI mechanism. Its input is a value obtained from a composition of the MPI pramiti
type (send, receive, etc.), the destination process and the buffesadilVith this value
the DPD detects the pattern of the application periodic behavior. When adgsrio
detected, the profiling library keeps track of the time spent in executing thkeyekriod.
These two values, MPI time and execution time, are averaged with the valtadseab
from some periods and are passed to the resource manager to feeddagaallpolicy.

More details of this mechanism can be found in [2].

mpi_send(.

: > {
/ begin measure() / 1(>mp:|. send (= »)

mpi_send()

pmpi_send(. “ . “
stop_1 measure() \ } I mpds meu code %/ :
process_measure () , N
} : 2 :
Application code Profiling library MPI library

Figure 4: NANOS-RM profiling mechanism

The NANOS Resource Manager in the eNANOS Project 7

7 NANOS-PS

The NANOS-PS is a tool included in the NANOS-RM package that allowssuser
applications to obtain information about the status of the jobs, as well as s@ite ba
information regarding the NANOS-RM details. The NANOS-PS can be quigni®ugh

a command-line client or through an APl. The NANOS-RM information includes
detailed information of scheduling decisions such as the allocations betvitigs &hd
threads/processes. Moreover, it includes the monitoring data of thenguapplications
following the job model presented previously in figure 3.

8 Application API

From the point of view of the application, we are assuming that the run timeiébrar
(of OpenMP or MPI) have been modified to include the following methods. édewy it

is also possible to invoke these methods directly from the applications throegkPth
shown in listing 1.

int ConnectRM(nt masterjobid)
void DisconnectRM ()

int CPUSCurrent()

int CPUSRequestint cpus)

void NewThread(nt pid,int vpid)
int MustRelease(nt id)

int ReleaseCPUint vpid)

void WakeUpThreads ()

Listing 1: NANOS-RM application API

ConnectRM connects with the NANOS-RM. It returns 0 if the connection is
established successfully and -1 if there is any error. ithster_jobid is the master
process identifier of the job in the case of MPI+OpenMP applications. Notedha
invoke the rest of the methods it is necessary to establish a connectiaaysigy if
there is no established connection an error is throRisconnectRM disconnects the
application to the NANOS-RMCPUSCurrent returns the current number of allocated
CPUs hy the applications that are running in the node at the moment that thedmetho
is invoked. CPUSRequest requests the indicated number of CPUpus) for the
application. It waits until the next scheduling cycle and returns the nunfladiocated
CPUs to the applicatiorNewThread informs the NANOS-RM that the application has
obtained a new kernel thread. Tpid is the physical identifier of the new thread aumid

8 I. Rodero, J. Corbalan

is the logical identifier (which can be frofto threads_number-1). MustRelease returns

1 if the logical identifier of the thread (which is specifiedidyis marked to be released.
This situation happens when the NANOS-RM reduces the number of alloC&ted of

an application.ReleaseCPU blocks the thread that is specified by its logical identifier
(vpid). In order to invoke this method, an application must executeMhsRelease
method previously to check whether the thread must be relea¥étkeUpThreads
unblocks all the threads that are marked to be resumed. This situationnisappen
the NANOS-RM increases the number of allocated CPUs of an application.

9 Monitoring API

The monitoring API that is one of the mechanisms to provide dynamic data from the
applications that are under the NANOS-RM control. This API providesrmétion
regarding the available resources and the current job status througtetheds shown

in listing 2.

int ConnectJM2RM (char* hostname jnt xfds)

void DisconnectIM2RM (int «fds)

int getStaticInfoSystemi(nt xfds ,struct STATIC_INFO_system xinfo)
int getDynamiclnfoSystemi(nt «fds, struct DYN_INFO_system xinfo)
int getPS({nt xfds,JM.data «xJM_info, int detail)

Listing 2: NANOS-RM job scheduler and monitoring APIs

Connect_JM2RM connects the monitoring system to the NANOS-RiNgstname
indicates the node where the NANOS-RM is running &dd is the connection
handler which is an output parameter. The method returns O if the connestion
established successfully and -1 if there is any error. Note that the ctimménandler
is required by the rest of the methods, therefore it is necessary to dstalglisminection
previously.Disconnect JM2RM disconnects the monitoring system to the NANOS-RM.
fds should be the connection handler that was returned b dmeect_ JM2RM method.
getSaticlnfoSystem andgetDynamiclnfoSystem collects static and dynamic information
of the system respectively. They return O if the method has been exegtapdrly
and -1 if there is any errorfds is the connection handler that was returned by the
Connect_JM2RM method. info must be a valid memory address where to return the
monitoring data.The static monitoring information follows t&BATIC_INFO_system
data structure and the dynamic information follows BMN_INFO_system one. getPS
collects information concerning the running jobs details. It returns 0 if the adéetls

The NANOS Resource Manager in the eNANOS Project 9

been executed properly and -1 if there is any error. Since it allocates memitt
malloc, it must be freed when it is not usedetail indicates the detail level of the
data that the NANOS-RM will provide. The valid values fistail are RESUMED and
DETAILED.

10 Performance API

The performance API of the NANOS-RM is provided jointly with the applicatidpl A
It has its own methods to send the information concerning the performantéheo
connection and disconnection functionalities are provided by the applicABdbnThe

performance API adds the two new functions that are described in listing 3.

void SetPercBalancingDatalpuble percentage)
void SetlterTimeData@ouble time)

Listing 3: NANOS-RM performance API

SetPercBalancingData provides the percentage of time that the application has been
run inside MPI functions.SetlterTimeData returns the spent time per iteration of the
application’s most external loop. We assume that applications are iterative.

11 Summary

In this paper we have presented the NANOS Resource Manager, wedeacribed

its main functionalities and how it has been integrated into the eNANOS projeat. Ou
main lines of future work are focused on improving the coordination with thaNDIS
Scheduler [6] in order to enhance the scheduling strategies in clusteposed of SMP
architectures.

Acknowedgements

This paper has been supported by the Spanish Ministry of Science acdtitosh under
contract TIN200760625C0201.

10 I. Rodero, J. Corbalan

References

[1] J. Corbalan, Coordinated Scheduling and Dynamic Performancdygisain
Multiprocessor Systems, Ph.D. thesis, Computer Architecture Department,
Technical University of Catalonia (UPC), Spain (July 2002).

[2] J. Corbalan, A. Duran, J. Labarta, Dynamic Load Balancing of M#flenMP
Applications, in: International Conference on Parallel ProcessingR)CMontreal,
Canada, 2004, pp. 195-202.

[3] F. Freitag, J. Corbalan, J. Labarta, A Dynamic Periodicity Detectppligation to
Speedup Computation, in: IEEE International Parallel and DistributedeBsot
Symposium (IPDPS), San Francisco, CA, USA, 2001.

[4] C. McCan, R. Vaswani, J. Zahorian, A Dynamic Processor Allocatmlicy
for Multiprogrammed Shared-Memory Multiprocessors, ACM Transactions
Computer Systems 11 (2) (1993) 146-178.

[5] The MPI Message-passing Interface Standard Web Site.
http://ww. npi -forum org

[6] I. Rodero, J. Corbalan, Design and Implementation of the eNANOS&@&dhr,
UPC-DAC-RR-CAP-2008-20, Tech. rep., Computer Architecture Depant,
Technical University of Catalonia (2008).

